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ABSTRACT 
The aim of this paper is parametrically analyze the main factors that influence on the progress of 

concrete carbonation front. Therefore, a numerical model was developed using Artificial Neural 

Networks (ANNs), considering the Multi-Layer Perceptron class, designed in a C++ object-oriented 

program. The software was fed by experimental degradation data available in the current literature. 

The results obtained in the parametric analysis, besides adding knowledge to the building pathology 

area, reinforce concepts already known in the literature, demonstrating the efficiency of ANNs in the 

investigation of concrete carbonation. 

Keywords: carbonation of concrete; time-to-corrosion initiation; Artificial Neural Network; 

mathematical modelling. 
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Análise paramétrica da carbonatação em estruturas de concreto armado via 

Redes Neurais Artificiais 

 
RESUMO 

O presente trabalho tem como objetivo analisar parametricamente a influência dos principais 

fatores que afetam o avanço da carbonatação em estruturas de concreto. Para tal, desenvolveu-se 

um modelo numérico empregando Redes Neurais Artificiais (RNAs) do tipo Multi-Layer 

Perceptron, sendo concebido em linguagem orientada a objetos C++, o qual foi testado com 

dados reais de degradação disponíveis na literatura. Os resultados obtidos na análise paramétrica 

reforçam conceitos já conhecidos na literatura, demonstrando a eficiência de RNAs no estudo da 

carbonatação do concreto, além de agregar conhecimento à área de patologia das construções. 

Palavras chave: carbonatação do concreto; tempo de iniciação da corrosão; Redes Neurais 

Artificiais; 

 
 

Análisis paramétrico de la carbonatación en estructuras de hormigón por 

Redes Neuronales Artificiales 

 
RESUMEN 

El presente estudio tiene como objetivo analizar paramétricamente los principales factores que 

influyen en el avanzo de la carbonatación de las estructuras de hormigón. Por lo tanto, se 

desarrolló un modelo numérico utilizando Redes Neuronales Artificiales (RNAs o NeuroRed), 

del tipo Multi-Layer Perceptron, desarrollada en lenguaje orientado a objetos C++, la cual fue 

probada por datos de degradación reales disponibles en la literatura. Los resultados obtenidos en 

el análisis paramétrico refuerzan conceptos ya conocidos en la literatura, demostrando la 

eficiencia de las RNAs en el estudio de la carbonatación del concreto, además aportando 

conocimientos en el área de patología de las construcciones. 

Palabras clave: carbonatación del hormigón; tiempo de iniciación de la corrosión; Redes 

Neuronales Artificiales; modelado matemático. 

 

 

 

1. INTRODUCTION 
 

Concrete reinforcement (Rebars) corrosion is the pathology with highest occurrence index in 

reinforced concrete structures (Taffese et al., 2013; Kari et al., 2014; Possan, Andrade, 2014; 

Andrade et al., 2017). As an example, this index varies from 14 a 64 % in Brazil, according to the 

region (Dal Molin, 1988; Andrade, 1992; Aranha 1994). 

Carbon dioxide (CO2) ingress leads to reduction of calcium hydroxide (Ca(OH)2) from the porous 

concrete matrix and, as a consequence, concrete pH decreases from 13 to approximately 8, letting 

rebars susceptible to corrosion (Bakker, 1988; Chang et al., 2006). According to Possan et al. 

(2017), the increasing CO2 emissions in the atmosphere worldwide with cities development brings 

several consequences to concrete structures in urban environments. The life cycle of the 

structures are affected by the elevation of CO2 emissions in the environment as the rate of 

carbonation increases, reducing their durability. 

There are nowadays several works that explain and model carbonation of concrete. Until mid-

1980s, prediction of carbonation depth were obtained by linear and non-linear regressions, based 

in several factors, such as water/cement ratio, type of binder and exposure conditions (Izumi et 
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al., 1986; Kobayashi et al., 1990). In the following years, Papadakis et al. (1991), Ishida et al. 

(2001) e Maekawa et al. (2003) included physico-chemical formulations related to the hydration 

reaction of the cement paste and the CO2 dissolution in the concrete porous matrix in their 

models, which enabled more accuracy in the determination of the carbonation front. However, 

Possan (2010) point out that these models requires resolution of great complexity equations that 

govern the diffusion of CO2 in concrete, and hard to find parameters, such as the diffusion 

coefficient of carbon dioxide. 

Use of computational tools, such as Artificial Neural Networks (ANNs), is a reliable alternative 

to overcome hardships imposed by the modeling of carbonation of concrete due to is ability to 

map and to model complex non-linear problems, without knowing all phenomena involved 

(Braga et al., 2000, Lu et al., 2009; Kwon et al., 2010; Güneyisi et al., 2014; Taffese et al., 2015; 

Félix, 2016). 

In this study, we analyze several factors on the carbonation phenomenon, such as relative air 

humidity, CO2 concentration, concrete composition, cement type, admixtures, exposure 

conditions to rain, and compressive strength of concrete. A prediction model of the carbonation 

depth is obtained through Multilayers Perceptron ANN and Backpropagation learning algorithm. 

Results show the ANN potential to model the depth of carbonation in concrete. 

 

2. CARBONATION OF CONCRETE 
 

Carbonation of concrete is a physical-chemical reaction that leads to the reduction of capillary 

porosity and affects the equilibrium of pore water content. Corrosion of rebar in reinforced 

concrete is also a consequence (Neville, 1997). According to Vesikari (1988) and Hamada 

(1969), the depth of carbonation in concrete increases over time (Figure 1), as a function of 

several intrinsic parameters and the environment. 
 

 
Figure 1. Schematic representation of the carbonation of concrete.  

Adapted from Possan (2010). 

 

 

 



 

       Revista ALCONPAT, 7 (3), 2017: 302 – 316 

 

Parametric analysis of carbonation process in reinforced concrete structures through 

Artificial Neural Networks 

                                                                                                                  E. F. Felix, R. Carrazedo, E. Possan 
305 

There are several works in which carbonation and its influence factors are described, such as 

Hamada, 1969; Parrot, 1987; Helene, 1993; Houst et al., 2002; Pauletti et al., 2007; Possan 2010; 

Talukdar et al., 2012. Pauletti et al. (2007) and Possan (2010) point out that the influence 

parameters in the carbonation of concrete are related to (i) environmental conditions: 

temperature, relative air humidity and CO2 concentration; (ii) concrete: mix design, quality of 

execution and curing, use of admixtures, and chemical composition of the binder; and (iii) 

exposure conditions: internal, external environment and rain protection. All these factors must be 

evaluated both in the study of carbonation phenomenon and in its modeling. In the present work 

an AAN model is proposed to evaluate the depth of carbonation in concrete considering, as input 

parameters, relative humidity, CO2 concentration, concrete compressive strength, cement type, 

exposure conditions, use and mix design of admixtures, and age of concrete. 

 

3. CARBONATION PREDICTION MODEL THROUGH ANN 
 

The proposed methodology is divided in two stages: i) development of a prediction model of 

depth of carbonation in concrete using ANN; and ii) parametric analysis of the variables 

employed by the model.  

 

3.1 Model Development 

 

We based our model on the Multilayer Perceptron model trained by Backpropagation Momentum 

algorithm. The methodology used to obtain the model is presented in flowchart of Figure 2. 

 

 
Figure 2. Flowchart of the prediction model of depth of carbonation in concrete 
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In the first stage, the database is set up to cover all input variables (relative humidity, CO2 

concentration, concrete compressive strength, cement type, exposure conditions, use and mix 

design of admixtures, and age of concrete). The database is composed by experimental results 

from Meira et al. (2006) and Vieira et al. (2009), and by Possan (2010) focus group, using 

respectively 179 and 100 data points. Some input variables were converted to numbers in order to 

be properly associated to the AAN, such as cement type (CP II-E, CP II-F, CP II-Z, CP III, CP IV 

and CP V ARI), numbered from 1 to 6. Exposure conditions was also represented by 1.30, 1.00 

and 0.65 when exposed to indoor environment, external environment yet protected from rain and 

unprotected from rain, respectively, as established by Possan (2010). This process defined the 

model applicability and boundaries for input variables, as presented in Table 1. 

 

Table 1. Database boundaries. 

Input Variable Boundaries / Domain 

Cement Type [CP II-F1; CP II-Z2; CP II-Z3; CP III4; CP IV5; CP V6] 

Relative Humidity (%) [30 - 90] 

Exposure conditions [1.30, 1.00, 0.65] 

Content of additions (%) [0-30] 

CO2 concentration (%) [0.01-3.0] 

Compressive strength (MPa) [20-90] 

Age of concrete (years) [0-60] 
1 CP II F: Portland cement composite with filler - NBR 11578. There is no equivalent in ASTM.  
2 CP II Z: Portland cement composite with Pozzolan - NBR 11578. Pozzolan-modified Portland - ASTM C 595. 
3 CP II E: Portland cement composite with Slag - NBR 11578. Slag-modified Portland - ASTM C 595. 
4 CP III: Portland cement composite with blast furnace - NBR 5735. Portland blast furnace slag - ASTM C 595. 
5 CP IV: Portland pozzolan cement - NBR 5736. Portland pozzolan - ASTM C 595. 
6 CP V ARI: Portland cement high initial strength - NBR 5733. Portland with high early strength - ASTM C 150. 
 

 

The boundaries or domain defines limits to use the model, since AAN are unable to extrapolate 

results, and it is only possible to map and to train an ANN within its domain (Braga et al., 2000). 

AAN requires splitting the entire database in three smaller databases, one for training, other to 

validate, and the last to evaluation. Figure 3 shows the amount of data allocated in each database. 

 

 

 
Figure 3. Amount of data allocated in each database. 

 

Each database (training, validation and evaluation) are used in a step of the process of modelling 

with AAN. The first database is responsible to train the network, through each pair of 
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input/output. The second database is responsible to validate and to certify the trained network. 

The third and last database is responsible to test and to check the model capabilities.  

AAN trained was then classified by topology, activation function and learning rate of the train 

algorithm, as described by Félix (2016). 

We created 1200 ANN’s with different learning rates (0.1, 0.2, 0.3 and 0.4), input entries (4, 5 

and 7 perceptron’s), number of hidden layers (one or two), and number of perceptron’s in the 

hidden layer (from 0 to 9). With all possible combinations, resulted in 1200 ANN’s (4*3*10*10). 

See figure 4 for details. 

  

 
Figure 4. Tested topologies and input entries. 

 

We adopted the root mean square error (RMSE) between depths of carbonation measured and 

depths of carbonation evaluated by the trained network as convergence criteria, according to 

Equation (1). 

 

 
2

1

1 n

i m

i

RMSE x x
n 

   (1) 

 

where n is the number of outputs, xi is the value provided by the network for the i-th output, and 

xm is the average of the values from all outputs. 

ANN training is made by the package Project-Yapy (Konzen et al., 2011), provided in C++. 

ANN performance was evaluated by the following parameters: correlation coefficient (R²), root 

mean square error (RMSE), maximum error (Emax, largest error provided), and minimum error 

(Emim, smallest error provided). These parameters were evaluated both in the training stage and in 

the validation stage. In the test stage, these parameters were also used to access the performance 

of the network. 

After ordering by their performance, it was possible to select the network that could better 

represent the carbonation of concrete. Figure 5 shows the selected network, containing three 

layers of perceptrons. The first layer has seven neurons, responsible for input. The second (or 

hidden) layer has four neurons, which are responsible to processing information, and the last 

layer has a single neuron, responsible for output – depth of carbonation in concrete. 
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Figure 5. Chosen topologies and input entries. 

 

Correlation charts between the carbonation depths modeled by the program (modeled depth) and 

the natural carbonation depths (observed depth, provided by Possan (2010)) are shown in Figures 

6(a) and 6(b). 

 

  
Figure 6(a). Training correlation. Figure 6(b). Validation correlation. 

 

A complete description of the training process of the networks and the parameters used in the 

modeling can be found in Felix (2016). 

 

3.2 Parametric analysis of carbonation 

 
We decided to perform a parametric analysis of the influence of the input variables on the 

evaluation of the carbonation depth in concrete. The analysis was divided into four, evaluating 

the influence of a single or two input variables, as shown in Figure 7. 
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Figure 7. Input parameters evaluated in each parametric analysis. 

 

4. RESULTS 
 

4.1 Validation with reference 

 

Initially, in order to certificate the performance of the developed model, we compared our results 

with others proposed models and degradation values provided by Possan (2010). Equation (2)-(6) 

introduces carbonation models provided by Smolczyk (1976), Vesikari (1988), Bob & Afana 

(1993), EHE (2008) and Possan (2010), respectively.  

 

𝑦 = 𝑎. (
1

√10𝑓𝑐

−
1

√10𝑓𝑐𝑙𝑖𝑚

) . √52. 𝑡 (2) 

𝑦 = [26. (𝑎𝑐 − 0.3)2 + 1,6] (3) 

𝑦 = 150. (
𝑐. 𝑘. 𝑑

𝑓𝑐

) . √𝑡 (4) 

𝑦 = 𝐶𝑎𝑚𝑏 . 𝐶𝑎𝑟 . 𝑎. 𝑓𝑐𝑚
𝑏 . √𝑡 (5) 

𝑦 =  𝑘𝑐  .  (
20

𝑓𝑐

)
𝑘𝑓𝑐

. (
𝑡

20
)

1

2

 . 𝑒𝑥𝑝 [(
𝑘𝑎𝑑  . 𝑎𝑑

3

2

40 + 𝑓𝑐

) + (
𝑘𝐶𝑂2

 . 𝐶𝑂2

1

2

60 + 𝑓𝑐

) − (
𝑘𝑅𝑈 . (𝑈𝑅 − 0.58)2

100 + 𝑓𝑐

)] . 𝑘𝑐𝑒            (6) 

 

where is y is the carbonated depth (mm), a is the rate of carbonation, fc is the concrete 

compressive strength (Mpa), fclim is a limiting value for the carbonated concrete compressive 

strength (MPa), t is the age of concrete (years) and ac is water/cement ratio. The input parameters 

that are function of the type of binder and exposure conditions are defined using tables provided 

by each author in their work. More details can be found in Félix (2016). 
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Some scenarios are provided in Table 2 and compared in Figure 8(a)-(d), showing the depth of 

carbonation vs time. 

 

Table 2. Test Stage – Trail Scenarios. 

Scenario CO2 (%) 
Relative 

humidity (%) 

Exposure 

conditions 

Binder 

type 

Compressive 

Strength (MPa) 

I 0.01 70.00 Protected CP II – F 30.00 

II 0.01 70.00 Protected CP III 40.00 

III 0.01 65.00 Unprotected CP IV 40.00 

IV 0.01 65.00 Unprotected CP V 40.00 

          OBS.: Time of analysis: 60 years; No chemical addition is considered. 

Em todos os cenários o teor de adição (no concreto) é zero e o tempo de análise é de 60 anos. 

 

  
 (a). Scenario I.  (b). Scenario II. 

 

  
 (c). Scenario III.  (d). Scenario IV. 

Figure 8. Test Stage – Trail Scenarios. 

 

The results show the applicability of the model and that the proposed model is an efficient tool 

for estimating the depth of carbonation in concrete. 

 

4.2 Parametric Analysis 

 
Figure 9 shows depth of carbonation in concrete after 50 years obtained in the proposed model 

varying only the type of binder and the compressive strength. In this simulation, we considered 

an environment protected from rain, with 65% of relative humidity, 0.04% CO2, and no additions 

in the concrete production.  
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Figure 9. Depth of carbonation as a function of type of binder and compressive strength. 

 

One may notice in Figure 9 that concretes produced with CP III and CP IV present greater depth 

of carbonation, notably with low compressive strength concretes. Jiang et al. (2000) and Possan 

(2010) noticed a negative influence of additions on the depth of carbonation, due to the reduction 

of the alkali reserve when the concrete is produced with CP III and CP IV, which have high 

levels of slag (from 35 to 70%) and pozzolan (from 15 to 50%) in their compositions, 

respectively. CP II-E and CP II-Z are also composed cements (with slag and pozzolan, 

respecively), however with lower levels of admixtures. That would explain the lower depth of 

carbonation in concrete produced with CP II-E and CP II-Z than CP III and CP IV. 

 

 
Figure 10. Depth of carbonation as a function of levels of additions and compressive strength. 
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One may notice in Figure 10 the influence of additions content (silica fume) on the depth of 

carbonation. It is observed that the depth of carbonation is barely affected by the addition in 

concretes with higher compressive strength (40, 50 and 60 MPa). Is also noted that the higher the 

addition content, greater is the depth of carbonation for concretes with lower compressive 

strength than 40 MPa. Kulakowski et al. (2009) report that, in concrete with higher compressive 

strengths (greater than 30 MPa), the CO2 intake is smaller due to porosity, even for concretes 

with low alkaline reserves. The authors point out that, for concrete with compressive strength 

greater than 40 MPa, the depth of carbonation is independent of additions and type of cement. In 

the case of lower compressive strength, the presence of additions increases the depth of 

carbonation, and the alkali reserve effect predominates (Kulakowski et al., 2009). 

 

 
Figure 11. Depth of carbonation as a function of relative humidity and exposure conditions. 

 

Figure 11 shows the depth of carbonation in a 50 years old concrete obtained in the proposed 

model when relative humidity and the environment exposure conditions are modified. In this 

simulation, we considered a concrete structure with compressive strength of 30 MPa, CP III, 0.04 

% CO2, and no additions in the concrete production. 

One may notice in Figure 11 that the depth of carbonation reach maximum when relative 

humidity is close to 60%. Parrot (1987), Neville (1997) and Possan (2010) point out that depth of 

carbonation reaches its maximum value when the relative humidity is between 50 and 80%. They 

also mention that the relative humidity can be considered as the environmental factor with the 

greatest influence on carbonation. Possan et al. (2017) observed in a 35 years old concrete dam 

that the larger the internal humidity, the lower the depth of carbonation depth. The authors also 

notice that no carbonation was observed when moisture was about 100%. 

Figure 12 shows the depth of carbonation as a function of the exposure conditions to different 

CO2 concentrations. In this simulation, we considered a concrete structure with compressive 

strength of 30 MPa, CP III, relative humidity of 65%, no additions in the concrete production, 

and in an unprotected outdoor environment. 

One may notice that higher degree of exposure to CO2, greater the depth of carbonation in 

concrete over time. An increase of 0.1% of CO2 concentrations leads to an increase of carbonated 

depth in 2.15%.  
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Figure 12. Depth of carbonation as a function of CO2 concentrations. 

 

5. CONCLUSIONS 
 

In this work, we present an Artificial Neural Network for the prediction of the depth of carbonation in 

concrete structures. Results show the great potential of ANN to model the carbonation phenomenon, 

considering the several types of cements commercialized in Brazil. 

The multiplayer perceptron network developed in this work is capable to provide the depth of 

carbonation as function of relative air humidity, CO2 concentration, concrete composition, cement 

type, admixtures, exposure conditions to rain, and compressive strength of concrete. 

The parametric study carried out on the developed model confirmed results described by others, such 

as: 

1. The carbonation decreases as the compressive strength of the concrete is increased; 

2. The type of cement has a secondary influence on the carbonation phenomenon, since the 

carbonation is modified by the content of admixtures present in the cement; 

3. Additions only has influence on depth of carbonation on concretes with low compressive strength 

(up to 60% carbonate depth), which is reduced or even eliminated in concretes with high 

resistance. 

4. Exposure to environments with high CO2 concentrations, such as tunnels, parking lots, urban 

environment with heavy vehicle traffic, increases carbonation rate. 

The results obtained in the parametric analysis demonstrate the efficiency of ANNs in the study of the 

carbonation rate in concrete, improving the study of constructions pathology. 
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