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ABSTRACT 
Pathology identification is a routine activity in Pavement Management Systems (PMS) for decision-

making about Maintenance and Rehabilitation (M&R) services. Traditional methods can be time-

consuming, disrupt traffic, and cause accidents. This study evaluated pathologies on asphalt pavements 

using walking survey, manual classification of images from a Remotely Piloted Aircraft (RPA), and 

supervised classification. Manual classification resulted in 93.1% accuracy compared to 32.7% in 

supervised classification. The study concludes that the RPA can evaluate pathologies in asphalt 

pavements, providing time savings and safety. 
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Classificação supervisionada de patologias na superfície de pavimentos 

asfálticos a partir de Aeronave Remotamente Pilotada (RPA) 

 
RESUMO 

A identificação de defeitos é atividade rotineira em Sistemas de Gerência de Pavimentos (PMS) 

para tomadas de decisão sobre serviços de Manutenção e Reabilitação (M&R). Métodos 

tradicionais podem ser demorados, prejudicar o tráfego e causar acidentes. Neste estudo, 

patologias em pavimentos asfálticos foram avaliadas a partir de três métodos: por caminhamento, 

classificação manual de imagens de uma Aeronave Remotamente Pilotada (RPA) e classificação 

supervisionada. A classificação manual resultou em 93,1% de acerto, contra de 32,7% na 

classificação supervisionada. Conclui-se que a RPA é adequada para avaliar patologias em 

pavimentos asfálticos, proporcionando economia de tempo e segurança. 

Palavras-chave: pavimento; gerência de pavimentos; patologias; Aeronave Remotamente 

Pilotada; RPA. 

 

Clasificación supervisada de patologías en la superficie de los pavimentos de 

asfalto desde una Aeronave Pilotada Remotamente (RPA) 

 

RESUMEN 
La identificación de defectos es una actividad rutinaria en los Sistemas de Gestión de Pavimentos 

(PMS) para la toma de decisiones sobre los servicios de Mantenimiento y Rehabilitación (M&R). 

Los métodos tradicionales pueden consumir mucho tiempo, interrumpir el tráfico y causar 

accidentes. En este estudio se evaluaron patologías sobre pavimentos asfálticos utilizando tres 

métodos: caminando, clasificación manual de imágenes desde una Aeronave Pilotada 

Remotamente (RPA) y clasificación supervisada. La clasificación manual dio como resultado una 

precisión del 93,1 %, frente al 32,7 % de la supervisada. Se concluye que el RPA es adecuado para 

evaluar patologías en pavimentos asfálticos, brindando ahorro de tiempo y seguridad.  

Palabras clave: pavimentos; gestión de pavimentos; patologías en pavimentos; Aeronave Pilotada 

Remotamente; RPA. 
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1. INTRODUCTION 
 

Road transport is one of the most used worldwide because it allows door-to-door travelflexibility. 

Maintaining roads with proper rolling quality ensures safety, comfort, and economy for users. In 

this regard, Pavement Management Systems (PMS) are handly tools for private companies and 

public bodies responsible for managing highways. Its objective is to formalize decision-making, 

ensuring consistency in decisions at different levels and the best possible use of invested resources. 

The good functioning of an PMS, in turn, depends on the continuous feeding of its database 

composed of evaluations. Among the most critical evaluations of an PMS is the evaluation of 

pathologies on the surface, one of the primary surveys for defining strategies for the Maintenance 

and Rehabilitation (M&R) of pavements.  

Despite its importance, data collection is not always efficient and secure. In the case of the 

evaluation of surface pathologies on pavements, the walking survey is the best known. Despite 

being widely used, this procedure takes time (Schnebele et al., 2015), training the technicians 

involved and collecting data in the field. Furthermore, it is subject to human errors that affect its 

reliability (Shaghlil and Khalafallah, 2018). Therefore, developing new technologies for surveying 

pathologies is essential to minimize the subjectivity of traditional methods and improve the 

productivity and repeatability of assessments (Ragnoli et al., 2018). In recent years, the use of 

RPAs (Remotely Piloted Aircraft) has been investigated for the evaluation of pathologies on 

pavements (Zhu et al., 2021), with a view to greater safety for users and evaluators without the 

need to block traffic (Tan and Li, 2019), providing good repeatability and agility in addition to the 

possibility of automated identification of pathologies (Pinto et al., 2020). Parente et al. (2017) 

observed that the manual identification of pathologies from an RPA presents a minor difference in 

the area compared to the field survey. 

Ranyal et al. (2022) systematically reviewed the literature published between 2017 and 2022 on 

technologies based on contact and non-contact sensors to monitor the condition of highways. The 

authors highlighted the prominence of intelligent sensors and data collection platforms, such as 

smartphones, drones, and integrated vehicles equipped with non-contact sensors, such as RGB, 

thermographic cameras, lasers, and GPR (Ground Penetrating Radar) sensors. In the case of UAVs, 

they point out that the main advantages are related to the field of view they offer, high resolution, 

deep and detailed data, ease of application, possibility of access to risk areas, and flexibility for 

quick surveys. On the other hand, they also cite the payload, memory restrictions, and legal 

limitations of use as disadvantages. 

Considering that the automatic detection of roads by UAVs is an essential step for the application 

of this tool in assessing the condition of highways, Ranjbar et al. (2023) created a method for 

automatically detecting road boundaries and segmenting them using temporal and geographic data 

through their Inertial Measurement Unit (IMU). The authors tested the method developed in urban 

areas, concluding that the system could perform this efficiently and recommending that future work 

apply convolutional neural networks (CNN) to increase the method's efficiency. 

Hassan et al. (2021) developed a CNN to detect yellow highways lanes to automate the survey of 

cracks and holes from UAV images. The authors created thirteen convolutional layers, one softmax 

output and two integrally connected, with mish activation applied to the first twelve layers utilizing 

a rectified linear unit (ReLU) to achieve deeper propagation and prevent saturation in the training 

phase. The model achieved an accuracy of 95%. 

Astor et al. (2023) compared the accuracy of surveying defects in pavements performed by UAVs 

with those obtained manually through regression models obtained for the SDI (Surface Distress 

Index) and the PCI (Pavement Condition Index). The PCI prediction model based on UAV images 

achieved an R² of 0.86 compared to an R² of 0.653 for the SDI prediction model. 
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Branco and Segantine (2015) delimited imaged areas using polygons to identify pathologies in 

urban pavements. The authors encountered difficulties due to vegetation and concrete buildings, 

classifying them as pavement in some analyses. Pan et al. (2018) used machine learning algorithms 

such as artificial neural networks, support vector machines, and random forests to classify 

pavement cracks and potholes. Among the three methods, the eighteen-tree random forest model 

had the best classification performance, with an accuracy of 98.83%. 

Despite the benefits that RPAs can provide, there are limitations to consider for surveying 

pathologies, such as flight height, camera resolution and calibration, and image orientation quality 

(Tan and Li, 2019), in addition to the software and algorithm classification used (Zhu et al., 2021). 

Pan et al. (2018) point out that the spatial resolution should be the minimum scale of the events of 

interest to avoid losing details. In their research, the number of unidentified cracks increased when 

the pixel size was more significant than 3 cm. Shaghlil and Khalafallah (2018) recommended flight 

heights between 5 and 10 m, the maximum being dependent on camera resolution. In this case, 

they used a 12-megapixel camera. With a 20-megapixel camera, Oliveira et al. (2020) obtained a 

maximum average error of 1.06% at a height of 30 m for the identification of a patch, while for 60 

m, they obtained a maximum average error of 7.18%. They explain that overlapping images of the 

same pathologies are decisive for the method's accuracy, as pathologies with larger dimensions 

will be present in several captures, thus generating more information for the processing stage. 

This study investigated the automated identification of pathologies in asphalt pavements by 

supervised classification of RPA images, filling an essential gap in related research as it points to 

the classification accuracy not only by calculating similar areas of the target elements but also their 

location. In addition, it includes not only the traditional method of surveying pathologies by 

walking but also the visual classification of RPA images, which allows, if not the automated 

identification of pathologies, a safer evaluation without traffic interference, attributes that are 

highly relevant in routine activities in pavement management, primarily on high-traffic roads. 

 

2. METHOD 
 

The method was divided into planning and carrying out the flight, manual classification, supervised 

classification, comparative methods, and statistical analysis of the supervised classification. 

 

2.1 Flight planning and execution 

The aircraft used to carry out the flight was the Phantom 4 Advanced model from the manufacturer 

DJI (Dà-Jiāng Innovations), with a battery life of 30 minutes. The camera attached to the aircraft 

has a lens with an 84º field of view and a focal length of 8.8 mm/24 mm, equipped with a 1” 20 

Megapixel CMOS (Complementary Metal Oxide Semiconductor) sensor and RGB (Red, Red, 

Green, and Blue) (DJI Brazil, 2017). For aerial mapping, the study considered the following 

factors: sunny weather and appropriate light incidence without clouds; an ideal flight window from 

11 a.m. to 1 p.m.; favorable wind speed and direction; landing and take-off locations selected 

according to local obstacles; and non-interference in airspace, as requested by the National Civil 

Aviation Agency (ANAC). 

The evaluated stretch has a length of 600 m, with two segments perpendicular to each other, located 

at Rua Irineu Parzianello, municipality of Pato Branco, state of Paraná, Brazil, with initial 

coordinates 26º11'55.14”S and 52º41'19.15''W, and end 26º12'4.92”S and 52º41'34.75”W. The 

stretch had several surface pathologies, allowing a comprehensive analysis of the percentage 

correctness of pathology and non-pathology identification methods. The presence of vegetation 

bordering the road allowed the evaluation of elements in shade.The flight plan complied with the 

following parameters: lateral coverage of 65%, 75% longitudinal coverage, and a maximum speed 

of 15 m/s with a GSD (Ground Sample Distance) of 1.5 cm/px, resulting in an average altitude of 
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50 meters. The approximate flight time was 7 minutes. Ten control points (Ground Control Points, 

GCPs), determined along the chosen stretch randomly and interspersed between the sides of the 

track, optimize the image processing adjustment. The authors posted targets and their respective 

coordinates through the GNSS receiver (Global Navigation Satellite System), model Zenith 25, 

and the RTK (Real Time Kinematic) method. The processing to create the orthomosaic was carried 

out in the Agisoft PhotoScan program, used to reference the photos, correct positions to the GNSS 

coordinates, and carry out the orthorectification to obtain the final orthomosaic used in the manual 

and supervised classifications. 

 

2.2 Manual image classification 

From the orthomosaic, AutoCAD® 2018 software vectorized each element to manually classify 

the pathologies (Fig. 1). 

 

 
Figure 1. Example of manual delimitation of pathology areas. 

 

To obtain reference data for the survey carried out with the RPA, pathologies were evaluated by 

path, identifying the type and extent of the pathologies to verify whether the existing pathologies 

on the road would be visible in the images obtained by the RPA. 

 

2.3 Supervised classification of images 

A complement to the QGIS platform (Quantum Geographic Information System), the SCP (Semi-

Automatic Classification Plugin) allowed the application of the supervised classification of images. 

From the final orthoimage, the plugin created a set of bands equivalent to the pre-processing step. 

The first processing stage includes the following categories: asphalt pavement in good condition, 

cracks, potholes, patches, vegetation (overlapping the road), and areas with clayey material. Next, 

samples of each element of interest to the classification were selected, which may have a pixel or 

a polygon as a capture instrument. These samples feed the training file, obtaining a raster image as 

a result of the classification. 

In order to estimate the most appropriate supervised classification method for the machine used, 

the tests included combinations of variables associated with the identification criteria per pixel or 

polygon of the classification algorithm (minimum distance, maximum distance, maximum 

likelihood, or spectral angle mapping) and the number of samples for machine learning. 

Four samples of each element were randomly collected for the first test, eight for the second, and 

sixteen for the third, totaling 24, 48, and 96 samples, respectively. This stage allowed a choice of 

samples consistent with the machine's capacity. Using the SCP, samples were collected by pixel, 

where the area with pixels similar to the selected one is delimited, and by polygon, where the area 

is delimited manually (Fig. 2). 
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                                            (a)                                          (b) 

Figure 2. Examples of sampling by polygon (a) and by pixel (b) 
 

As for image classification algorithms, SCP provides three options: (1) Minimum Distance, which 

classifies pixels by the average spectral distance between categories, by Euclidean distance, 

according to Eq. (1) (Richards, 2013): 
 

 

 𝑑(𝑥, 𝑦) = √∑(𝑥𝑖 − 𝑦𝑖)

𝑛

𝑖=1

²                                           (1) 

 

Where 𝑑(𝑥, 𝑦)  is the Euclidean Distance, 𝑥𝑖: Spectral signature vector of the pixel image, 𝑦𝑖: 

Spectral signature vector of the area of a sample, n: Number of bands in the image. 

 

(2) Maximum Likelihood, which calculates the normal probability distribution of the class, 

according to Eq. (2) (Richards, 2013): 
 

 
𝑔𝑘(𝑥) = ln 𝑝(𝐶𝑘)  −   

1

2
ln|Σ𝑘|  −   

1

2
(𝑥 − 𝑦𝑘)𝑡  Σ𝑘

−1(𝑥 − 𝑦𝑘) (2) 

 

Where 𝑔𝑘(𝑥) is the Normal Probability Distribution of the class, 𝑥: Spectral signature vector of the 

pixel image, 𝐶𝑘: Land cover class k, 𝑝(𝐶𝑘): Probability that the correct class is 𝐶𝑘, |Σ𝑘 |: 

Determinant of the covariance matrix of data in class 𝐶𝑘, Σ𝑘
−1: Inverse of the covariance matrix, 

𝑦𝑘: Spectral signature vector of class k. 

 

(3) Spectral Angle Mapping, which determines the degree of similarity between spectral curves, 

according to Eq. (3) (Kruse et al., 1993): 
 

𝜃(𝑥, 𝑦) =  cos−1 (
∑ 𝑥𝑖𝑦𝑖

𝑛
𝑖=1

(∑ 𝑥𝑖
2)𝑛

𝑖=1

1
2⁄

∗ (∑ 𝑦𝑖
2)𝑛

𝑖=1

1
2⁄

) (3) 

 

Where 𝜃(𝑥, 𝑦) is the spectral angle, 𝑥𝑖: Spectral signature vector of the pixel image, 𝑦𝑖: Spectral 

signature vector of the area of a sample, n: Number of bands in the image. 

The several combinations of identification criteria, classification algorithms, and number of 

samples allowed us to choose the best ones for this study. The results with the highest percentage 

of correct answers regarding the type and extent of pathologies were obtained with the Maximum 

Likelihood classifier using the polygon method with 24 and 48 samples. This study discarded tests 

with more samples due to the machine's capacity and the program's operating mode, which, during 

processing, continually overload the machine's memory. 

 

2.4 Comparative and statistical analysis 

After comparing the manual classification of images with data from the walking survey, manual 

classification was considered a reference for supervised classifications due to the high conformity 

of manual classification with pathologies in the field. 
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The Kappa index, a multivariate statistical technique, allowed for the assessment of the classifier's 

accuracy in identifying pathologies. The study compared the supervised classification with the 

samples used for training the algorithm and the supervised classification with the manual one. The 

Kappa indices obtained results from the Error Matrix (or confusion) provided in QGIS post-

processing and the Manual versus Supervised Success Matrix, respectively. In addition to this, 

another parameter used for class analysis was the Matthews Correlation Coefficient (MCC). 

 

2.4.1 Comparison of supervised classification successes with manual classification 

With the aid of QGIS, the polygons obtained in the manual classification were superimposed on 

the polygons from the supervised classification, resulting from transforming of the raster image 

into polygons. Thus, the study obtained common area of both classifications for each element. To 

verify the percentage of correct pathology identification, the manual classification results were 

confronted with those of the supervised classification from 24 and 48 samples. As an example, 

Figure 3 shows the same section manually classified (a) and supervised, with 24 samples (b) and 

48 samples (c). 

 

 
                   (a)                        (b)                    (c) 

Figure 3 (a) Manual, (b) Supervised with 24 samples and (c) Supervised with 48 samples. 
 

2.4.2 Confusion Matrix 

The confusion matrix compared the prediction class values for the validation data to the known 

values (Story; Congalton, 1986; Campbell; Hall-Beyer, 1997). This matrix maps the actual values 

of the validation set classes along the columns against the classes predicted by the classifier in the 

rows. The matrix diagonal displayed the correctly classified pixels, while cells outside the diagonal 

displayed those classified incorrectly or confused with another class (Mcgwire; Fisher, 2001). 

True positives (TP) and true negatives (TN) are the correct classifications. A false positive (FP) 

occurs when the outcome prediction is incorrect, such as yes (or positive) when it is no (negative). 

A false negative (FN) occurs when the prediction of the result is negative when the true result is 

positive (Witten; Frank; Hall, 2016). From these frequencies, classification performance indicators 

reflect the classifier's efficiency in detecting a given class. A multiclass confusion matrix (k x k), 

like the one in the case under study, can be represented as a set of k binary confusion matrices, one 

for each class, allowing further processing (Ruuska et al., 2018). 

 

2.4.3 Kappa Statistics  

In 1960, Jacob Cohen created the Kappa (K) index to measure the precision or degree of 

agreement between predicted and observed categorizations of a data set (Cohen, 1960). The 

coefficient also indicates the degree of agreement between the supervised classification and the 
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reference data, which can be the samples used in training the classification algorithm or an image 

of the manual classification defined as correct. In maps, the degree of agreement of the Kappa 

index can vary between 0 and 1, and the closer to the unit, the greater the degree of agreement. The 

interpretation of the classification proposed by Landis and Koch (1977) is used here, represented 

in Table 1: 
 

Table 1. Level of agreement based on the Kappa index 

Kappa value Interpretation 

0,00 - 0,20 Minimal 

0,21 - 0,40 Weak 

0,41 - 0,60 Moderate 

0,61 - 0,80 Strong 

0,81 - 1,00 Almost Perfect 

Source: Adapted from Landis and Koch (1977). 
 

Equation 4 calculates the Kappa index (K): 
 

 
𝐾 =

𝑃𝑜 − 𝑃𝑐

1 − 𝑃𝑐
  (4) 

 

𝑃𝑜 is the proportion of observed agreement, or overall accuracy, and 𝑃𝑐 is the proportion of casual 

agreement or total acceptance. The Division 5 gives the term 𝑃𝑂: 
 

 
  𝑃𝑜 =

𝑇𝑃 + 𝑇𝑁

𝑛
  (5) 

 

TP is the number of true positives, TN is the number of true negatives, and n is the total number of 

classified pixels. Equation 6 gives the term 𝑃𝐶: 
 

 
𝑃𝑐 =

∑(𝑃𝐶 ∗ 𝑃𝐶𝑅)

𝑛2
  (6) 

 

Where PC is the total number of pixels classified in each class, PCR is the total number of pixels 

in the actual class, and n² is the square of the total pixels. 

 

2.4.4 Matthews Correlation Coefficient 

The Matthews correlation coefficient (MCC) was first used by Matthews (1975). According to 

Baldi et al. (2000) MCC measures the quality of classifications. Their values range from -1 to +1, 

where coefficients closer to +1 represent a consistent forecast, those closer to 0 represent 

completely random forecasts, and those closer to -1 represent an inconsistent forecast. Eq. (7) 

calculates MCC: 

 
 

 
𝑀𝐶𝐶 =

(𝑇𝑃 ∗ 𝑇𝑁) − (𝐹𝑃 ∗ 𝐹𝑁)

√(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
 (7) 

 

TP is the number of true positives, TN is the number of true negatives, FP is the number of false 

positives, and FN is the number of false negatives. Pixels from different categories can result in 

similar spectral values and cause misclassification. Therefore, it is essential to indicate the 
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classifier's performance in detecting a given class, and the MCC fulfills this role through the binary 

matrix of each category. 

 

3. RESULTS AND DISCUSSION 
 

Four topics present the results: (i) flight performance and processing, (ii) manual classification of 

images, (iii) supervised classification of images, and (iv) comparison of methods and statistical 

analysis of supervised classification. 

 

3.1 Flight and processing 

After performing the flight and processing the images obtained in the RPA survey, a final 

orthomosaic was generated (Fig. 4). The GSD was 1.39 cm per pixel. To optimize the classification,  

we cut out of the image the excess edges that contained the surroundings beyond the limits of the 

track lane. 

 

 
Figure 4. Final orthoimage. 

 

3.2 Manual image classification 

Manual classification of pavement surface pathologies was relatively quick due to the ease of 

identification from orthoimaging. On the other hand, after a subsequent check with the survey by 

walking, it was evident that the shadows of trees adjacent to the road made it difficult to visualize 

some pathologies and their extent, mainly cracks. In addition, vegetation hid parts of the pavement. 

RPA images did not identify five pathologies noted in the walking survey. The area of patches, 

potholes, and cracks observed in the collection by walking was 1,759.45 m², while in the manual 

survey, it was 1,638.42 m², resulting in the identification of 93.1% of pathologies. The percentage 

was calculated based on geometric measurements recorded in sketches, with scale, in the walking 

survey. 

 

3.3 Supervised classification of images 

The classification of samples by polygons showed few regions in agreement with the actual surface 

condition of the pavement, as shown in Fig. 5. In addition, it resulted in different classifications for 

most of the selected image elements. 
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                                                         (a)                         (b)                          (c) 

Figure 5. (a) Pavement, (b) classification by polygons with 24 samples and (c) 48 samples. 
 

Pixels from different categories, such as good pavement and patches, presented similar shades in 

some images, resulting in similar spectral values and, consequently, in classification errors. The 

results found that some errors occurred due to shading and overlapping vegetation, making it 

impossible to classify these locations. 

 

3.4 Comparative and statistical analysis 

In this topic, we present confusion matrices and scatter plots generated from the confusion matrix 

resulting from the relationship between manual and supervised classifications. These results 

allowed calculating the Kappa index (K) and the Matthews Correlation Coefficient (MCC). 

 

3.4.1 Comparison between manual and supervised classifications 

For the comparison of manual and supervised classifications, Tab. 2 presents the results of the 

Maximum Likelihood method through identification by polygon with 24 and 48 samples, including 

identified areas and percentages of correct answers. 
 

Table 2. Results of the Comparison between Manual and Supervised Classification. 

Classes 
 Manual Superv. 48 samples Superv. 24 samples 

Areas (m²) Areas (m²) Acerto (%) Areas (m²) Acerto (%) 

Good paviment 4419.39 1233.00 27.90 1346.67 30.47 

Cracking 1552.50 458.76 29.55 467.19 30.09 

Pothole 2.53 1.24 49.01 0.66 26.09 

Patch 83.39 25.73 30.86 42.12 50.51 

Vegetation 247.40 186.14 75.24 192.52 77.82 

Soil 29.45 22.20 75.38 20.00 67.91 

Total 6334.65 1927.06 30.42 2069.16 32.66 

 

The supervised classification with 24 and 48 samples resulted in an overall hit percentage of 

32.66% and 30.42%, respectively. This result indicates that the number of samples needed is more 

relevant for accurately classifying areas with or without pathologies. 
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3.4.2 Confusion matrices and scatterplots 

Tabs 3 and 4 represent classification error matrices. 'Px', 'Pav', and 'class' refer to Pixels, Pavement 

good, and Classifieds, respectively. Rows contain sorted data, while columns contain reference 

data. Internal values represent the pixels, and correctly identified pixels were highlighted. 

Table 3. Classifier confusion matrix with 24 samples. 
 Pav. Crack Pothole Patch Vegetation Soil Px class 

Pav. 48682 9749 148 726 430  59735 

Cracking 3722 61794 123 667 1458  67764 

Pothole 307 5885 489 222 1150 755 8808 

Patch 9887 13114 24 12162 182  35369 

Vegetation 34 97  39 62564 207 62941 

Soil  19 3  7 61161 61190 

Px reais 62632 90658 787 13816 65791 62123 295807 

 

Table 4. Classifier confusion matrix with 48 samples. 
 Pav. Crack Pothole Patch Vegetation Soil Px class 

Pav. 190051 12879 450 1130 551 11 205072 

Cracking 18926 55103 785 1757 299  76870 

Pothole 2367 4299 2354 1183 312 89 10604 

Patch 9549 5383 229 12819 21  28001 

Vegetation 402 88 15 2 35516 17 36040 

Soil 309 12 44  26 6725 7116 

Px reais 221604 77764 3877 16891 36725 6842 363703 

 

The overlapping polygons defined in the manual and supervised classifications verified the 

correspondence of the identified pathologies. Figures 6 and 7 show the scatter plots of the 

percentage of pathologies identified by class for 24 samples (Figure 6) and 48 samples (Figure 7) 

derived from the confusion matrices for these cases.   
 

 
Figure 6. Dispersion of assertiveness: supervised classification 24 samples x manual 
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Figure 7. Dispersion of assertiveness: supervised classification 48 samples x manual 

 

Fig. 6 shows that the land and vegetation classes presented better results, with percentages of 

correct answers more significant than 60 and 70%, respectively. Good pavement, cracks, and 

patches presented values between 30 and 50%, understood as a bad result. The pans present the 

worst result, with a hit of approximately 25% and a higher number of areas erroneously classified 

as patches. 

Fig. 7 shows that the percentages of correct answers were similar to those in Fig. 6a, but with a 

significant increase for the pans. The Maximum Likelihood algorithm applies maximum likelihood 

(MaxVer), which explains these results. According to INPE (2006), the method weights the 

distance between the average values of the element's pixels through statistical parameters, 

assuming that all bands have a normal distribution, and calculates the likelihood that a pixel belongs 

to a specific element based on the samples. Thus, since the pot class presents different 

characteristics in the same occurrence, more samples contributed to a higher percentage of correct 

answers for this classifier. 
 

3.4.3 Kappa statistic 

The study calculated the Kappa index for four scenarios in two different comparisons. The first and 

best-known refers to the degree of agreement between categories predicted by the supervised 

classification for 24 and 48 samples for the data obtained in loco. The second consists of the degree 

of agreement between supervised and manual classification, referring to the visual identification 

and manual delimitation of pathologies. This analysis aims to elucidate the relevance of the Kappa 

index for analyzing pathologies in pavements through RPA based on the supervised classification 

of images. Table 5 shows the Kappa indices calculated from the confusion matrices presented in 

item 3.4.2. 
 

Table 5. Kappa indices for the four cases. 

Matrix Used 24 samples 48 samples 

Supervised classification 0.791 0.718 

Overlapping manual and supervised ratings 0.378 0.396 

 

According to the classification by Landis and Koch (1977), the indices of both classifiers are 

between 0.61 and 0.80, characterized as good agreement. However, for the correct classification 
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by superimposing manual and supervised classifications, the Kappa values range from 0.21 to 0.40, 

corresponding to weak agreement. 

The discrepancy between Kappa values obtained by the classifier and overlapping manual and 

supervised classifications shows that the index is not convenient for the qualitative analysis of 

pathologies from RPA despite being widely used in remote sensing. Quantitatively, the algorithms 

presented concordance was classified as good. However, they did not faithfully represent the 

positions and geometries of the pathologies, which can lead to erroneous interpretations regarding 

the accuracy of the assessment and, consequently, in decision-making regarding maintenance and 

rehabilitation strategies for the pavements. 
 

3.4.4 Matthews Correlation Coefficient (MCC) 

Due to the spectral similarity of the elements involved in the classification process, the MCC 

analyzed the classifier's performance for 24 and 48 samples of each class (Tab. 6). 
 

 

Table 6. Matthews Correlation Coefficient was obtained for each class. 

Class 24 samples 48 samples 

Good Pav. 0.74 0.72 

Cracking 0.71 0.63 

Pothole 0.18 0.35 

Patch 0.52 0.56 

Vegetation 0.96 0.97 

Soil 0.99 0.96 

 

Sorting results for 24 and 48 samples were similar. The potholes resulted in more classification 

errors because they have different colors, sometimes shaded or with clayey material. The patch 

element presented MCCs from 0.52 to 0.56, while "crack" and "good pavement" presented MCCs 

above 0.6 and 0.7, respectively, indicating that cracks have more significant potential for automated 

classification. 
 

4. CONCLUSION 
 

The study points out that identifying asphalt pathologies by RPAs can be an alternative to the 

traditional survey by walking, being more agile and safer, and not interrupting local traffic. The 

good level of detail of the images allowed a reliable manual classification (93.1% accuracy) in the 

visual identification and representation of the pathology's perimeter (extension) when taking as 

reference the data recorded in walking surveys.Supervised classification based on RPA is more 

complex than evaluation by walking, as it depends on specific equipment, adequate planning of 

flight plans, and reliable classification techniques and algorithms. The number of training samples 

was irrelevant, but how each sample was selected was decisive and should be standardized and 

carried out in such a way that the training of the algorithm is satisfactory.The Kappa indices, 

obtained by superimposing the images of the manual and supervised classifications, must be used 

with caution for the classification accuracy analysis because, without considering the location, 

verified here by superimposing the pathologies and verifying the type and extension of each target 

element, they can lead to mistaken interpretations about the assertiveness of the classification and, 

consequently, the condition of the pavements. 

The results obtained from complementary analyses indicate that the supervised classification did 

not show the desired accuracy for applications aimed at pavement management, as it does not 

characterize pathologies in detail about type, location, and extent when compared to the in-loco 

survey and manual classification of images. As a result, we recommend that, in future studies, 
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image treatment techniques be used that include the combination of pixel coloring, pathology 

geometry, and image pre-treatment, in addition to the application of other algorithms and 

processing techniques that allow the use of a more significant number of samples for training. 
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