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ABSTRACT  
In this research, the use of conductive nanoadditions, such as carbon nanotubes (CNT) and graphite 

products (GP), in cement specimens has been studied to develop strain sensing and heating functions. 

For this purpose, cement paste specimens with addition of 1% CNT and 5% GP have been fabricated 

and heating tests have been performed in direct current (DC) and alternating current (AC) at 20 V and 

40 V. In addition, the influence of temperature on the strain sensing tests in the range from 0 °C to 60 

°C has been studied, obtaining good results in both techniques. Therefore, these materials offer a very 

interesting alternative in structural monitoring and may have applications in the heating of 

infrastructures such as bridges and airports, avoiding the use of corrosive substances. 
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Efecto de las nanoadiciones carbonosas en las funciones de percepción de la 

deformación y calefacción en pastas cementicias 
 

RESUMEN 
En esta investigación se ha estudiado el uso de nanoadiciones conductoras, como los nanotubos 

de carbono (NTC) y productos de grafito (PG), en probetas de cemento para desarrollar las 

funciones de percepción de la deformación y calefacción. Para ello, se han fabricado probetas de 

pasta de cemento con adición de 1% NTC y 5% PG y se han realizado ensayos de calefacción en 

corriente continua (DC) y alterna (AC) a 20 V y 40 V. Además, se ha estudiado la influencia de la 

temperatura en los ensayos de percepción de la deformación en rangos comprendidos entre 0 °C y 

60 °C, obteniéndose buenos resultados en ambas técnicas. Por tanto, estos materiales ofrecen una 

alternativa muy interesante en la monitorización estructural y pueden tener aplicaciones en la 

calefacción de infraestructuras como puentes y aeropuertos, evitando el uso de sustancias 

corrosivas. 

Palabras clave: nanoadiciones; percepción; pastas de cemento; calefacción; resistividad. 
 

Efeito de nano adições de base carbono nas funções de deformação e 

percepção de aquecimento em pastas cimentícias  

 
RESUMO  

Nesta pesquisa, foi estudado o uso de nano adições condutoras, como nanotubos de carbono (CNT) 

e produtos de grafite (PG), em corpos de prova de cimento para desenvolver as funções de detecção 

de deformação e aquecimento. Para tanto, foram fabricados corpos de prova de pasta de cimento 

com adição de 1% de CNT e 5% de PG e realizados ensaios de aquecimento em corrente contínua 

(CC) e corrente alternada (CA) em 20 V e 40 V. Além disso, foi estudado a influência da 

temperatura em testes de percepção de deformação em faixas entre 0 °C e 60 °C, obtendo bons 

resultados em ambas as técnicas. Portanto, estes materiais oferecem uma alternativa muito 

interessante na monitorização estrutural e podem ter aplicações em infraestruturas de aquecimento 

como pontes e aeroportos, evitando a utilização de substâncias corrosivas. 

Palavras-chave: nano adições; percepção; pastas de cimento; aquecimento; resistividade. 
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1. INTRODUCTION 
 

Structural monitoring systems have been developed to oversee the performance of structures, 

aiming to ensure their safety and appropriate lifespan, as well as to optimize rehabilitation 

interventions (Baeza et al., 2018). Despite the varied typologies of strain sensors (piezoelectric 

ceramic sensors, fiber optic sensors, or strain gauges), their durability remains limited (Li et al., 

2004; Song et al., 2006). However, conductive cement sensors have emerged as a promising 

alternative and can be easily obtained by incorporating a conductive additive, such as carbon fibers 

(CF), nanofibers (CNF), or nanotubes (CNT), into the cementitious matrix (Camacho-Ballesta et 

al., 2016; Han et al., 2015). The integration of these conductive additions enhances the electrical 

conductivity of cement, enabling it to function as a strain sensor. By measuring changes in electrical 

resistance, the sensor can detect stress and deformation within the structure. The ability to correlate 

material resistivity changes with deformation makes them undoubtedly interesting for structural 

monitoring purposes. This property, commonly known as strain sensing, has been extensively 

explored in recent years (Baeza et al., 2013a, 2013b; Chung, 1998; Galao et al., 2014; Ubertini et 

al., 2014, 2016). 

The inclusion of a conductive material enhances the electrical conductivity of the composite, 

transforming it into a multifunctional material applicable to various concrete functions, such as de-

icing or serving as an anode in electrochemical techniques (Carmona et al., 2015; del Moral et al., 

2013). One of the most powerful and current functions that a conductive cementitious material can 

perform is heating. The increase in material temperature is based on the Joule effect when an 

electric current is applied, where heat is generated by current flowing through a conductor (Ding 

et al., 2013; Liu et al., 2010). The heat-generating capacity of electrically conductive cementitious 

materials is associated with their resistance, as expressed by Joule's first law (Wang et al., 2004). 

By controlling the supplied electrical power, the temperature of the compound can be adjusted. 

When this concept is applied to structural materials, it becomes possible to use the structural 

material itself to induce ice melting on its surface (or to prevent its formation). Traditional building 

heating systems include underground pipes, infrared heat lamps, heated fluids, and solar energy. 

However, these systems are complex to construct, costly, and lack integration with the original 

structure, limiting their application (Zhang et al., 2011). Yehia et al. (Yehia et al., 2000) and Chung 

(Chung, 2004) were pioneers in developing this function using conductive cementitious materials. 

Multifunctional cement-based compounds maintain high structural integrity with original 

structures. That is, the damage induced by thermal expansion during heating is insignificant, as 

their thermal expansion coefficient is similar to that of original cementitious structures (Chung, 

2004). The use of these materials in transport infrastructure such as bridges or airports could avoid 

the use of corrosive salts that may damage steel reinforcements, the concrete itself, and the 

ecosystem. Therefore, these materials could be viable for increasing the ambient temperature of 

rooms or for preventing ice formation, or inducing de-icing, in civil engineering infrastructures, 

among others. 

In this research, strain sensing and heating functions have been implemented in cement specimens 

with conductive nano-additions such as NTC and graphite products. 
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2. EXPERIMENTAL PROGRAMME 
 

2.1 Fabrication of Conductive Cement Paste Specimens 

The materials used in this research were as follows: 

- Distilled water. 

- CEM I 52.5 R Portland Cement UNE-EN 197-1, supplied by Cemex-Spain S.A. (Alicante). 

- Graphite products: Expanded graphite (ABG1010), supplied by Superior Graphite. 

- CNT Graphistrenght C100 provided by Arkema. 

- Superplasticizer Sika Viscocrete 20-HE, supplied by Sika-Spain. 

The dispersion process of the nano-additions is essential for the optimal utilization of their 

properties when integrated into the cement matrix. This process started with the weighing of the 

CNT under a fume hood. The concentration used during this treatment consisted of 18 grams of 

CNT per 450 ml of water. Then, the CNT dispersions were prepared using a Robot Coupé blade 

robot for 10 minutes. The resulting suspension is homogenized, adopting a less liquid consistency 

similar to a paste. The paste formed by the robot was poured back into the container, collecting all 

the paste from the robot's walls using a silicone spatula, and the superplasticizer Sika Viscocrete 

20-HE was added in a Plastifier/CNT ratio of 0.4. Then, an ultrasonic treatment was applied to the 

dispersion for 10 minutes using a Hielschier UP400St ultrasonic tip with a 65% amplitude, using 

an ice bath to avoid excessive increase in the mixture's temperature. 

The mixing of the pastes was carried out with a mortar mixer. The prepared dispersions were fully 

poured into the mixer's container and cement was added in three parts, approximately 600 g each 

time. Each part was mixed for 2 minutes at low speed. Finally, after all the cement parts were 

added, the paste was mixed for one more minute at high speed. The water/cement ratio for these 

pastes formed with a 1% CNT and 5% ABG1010 mix was 0.4. 

Next, the cement pastes were poured into standardized molds and compacted using a vibrating 

table. From each mold, 3 specimens of 4x4x16 cm3 were produced. Once the fresh paste was 

levelled in the molds, they were introduced into a humid chamber until the next day (24 hours), 

when they were extracted for demolding and proper labelling. Subsequently, the specimens 

continued curing in a humid chamber (100% RH) at 20 °C for 28 days, according to UNE-EN 196-

1:2018. After 28 days of curing, mechanical characterization tests were performed on 3 specimens, 

6 specimens were instrumented for conductivity and piezoresistivity tests, and 6 specimens were 

preserved for heating tests. 

 

2.2 Description of strain sensing test in climatic chamber. 

Prior to the strain sensing tests, the specimens were instrumented to enable the recording of 

measurements, using the four-point method. This instrumentation consists of painting four 

peripheral bands with silver paint (Conductive Silver RS 186-3600 from RS components), on four 

copper wires, previously wound peripherally according to the scheme in Figure 1. 
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Figure 1. Schematic of the instrumentation of specimens for resistivity tests 

 

The electrodes thus fixed constitute the electrical connections for the application of a predefined 

electric current between the outer points ① and ② while recording the potential difference 

measured between the inner points ③ and ④. The electric current was applied using a Keithley 

6220 digital source from National Instruments Inc. The potential difference was measured with a 

Keithley 2002 digital multimeter from National Instruments Inc. The 10 mm strain gauges (model 

10/120 CLY41-4L-3M, supplied by HBM) were used to record the deformations caused by both 

the stress and the temperature increase during the test. 

The tests were performed in a mechanical press controlling the load and the speed of its application 

with a climatic chamber model MUF 401, supplied by Servosis. The air temperature inside this 

chamber can be controlled within a temperature range of -10 °C to 150 °C. The measurement 

configuration is represented in the scheme of Figure 2. 

In addition to deformations related to the applied stress, the samples underwent additional thermal 

deformations due to temperature changes. To control this effect, a second control specimen was 

placed in the climatic chamber. No load was applied to this specimen, but its strain gauge recorded 

the thermal deformations, which were later subtracted from the measurement of the loaded 

specimen. 

Ambient temperature and the surface temperature of both specimens were measured with Pt-100 

type temperature sensors. Additionally, a small borehole was made in the control specimen to 

install a thermocouple at its center to monitor possible thermal gradients. To limit the effect of 

water loss related to the heating of the specimen, temperatures were set between 0 °C and 60 °C 

(with 20 °C increments). 

 

 
Figure 2. Schematic of the test inside the climatic chamber. (Retrieved from del Moral, B.,2021). 



 

                                                                              Revista ALCONPAT, 14 (1), 2024: 13 – 24 

                                  Effect of carbonaceous nanoadditions on strain sensing and heating functions in cement pastes  
del Moral, B., Farcas, C., Galao, O., Baeza, F. J., Zornoza, E., Garcés, P. 

18 

2.3 Description of heating test. 

Heating tests were conducted under laboratory conditions, after the curing period. The tests 

consisted of applying different voltages in alternating and direct current between the two ends of 

the conductive specimens (4 x 4 cm2). A layer of conductive silver paint was previously applied to 

improve the electrical contact between the primary electrodes (0.5 mm thick copper plate and 2 

mm thick carbon felt) and the cementitious material. The setup can be observed in Figure 3. 

 

 
Figure 3. Schematic of a 4x4x16 cm3 specimen prepared for testing. 

 

Temperature changes on the surface of the samples were continuously recorded using 6 resistance-

type Pt-100 temperature detectors connected to a data logger, and two additional Pt-100 sensors 

were placed to control the ambient temperature. The heating tests were performed by applying 

different voltages. The higher the applied voltage, the higher the temperature recorded. Different 

voltages were applied with a direct current (DC) power supply and an alternating current F5V 

power supply (AC, at 50 Hz). In both cases, the electrical current was measured with Keithley2002 

digital multimeters. 

 

3. RESULTS 
 

3.1Results of strain sensing tests at different temperatures. 

The influence of temperature in the range of 0 °C to 60 °C was studied in isolated tests. Table 1 

summarizes the relevant parameters of the tests performed on different days for 0 °C, 20 °C, 40 

°C, and 60 °C. The specimens were naturally returned to room temperature, and the next 

temperature test was conducted the following day. 

 

Table 1. Effect of temperature on different electromechanical parameters during 

 strain sensing tests: electrical resistivity, elastic modulus, gauge factor, and 

 Pearson's R2 coefficient of linear regression. 

Temperature 
Electrical Resistivity 

(ohm·cm) 

Elastic 

Modulus 

(GPa) 

Gauge Factor 

(FG) 
R2 

0 °C 43.70 26.20 14.30 0.968 

20 °C 43.80 26.00 17.40 0.971 

40 °C 44.18 23.60 22.30 0.975 

60 °C 45.70 23.10 58.80 0.888 
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A slight increase in resistivity with temperature was observed, from 43.7 Ohm·cm at 0 °C to 45.7 

Ohm·cm at 60 °C. Similar findings regarding insignificant changes in conductivity between 50 and 

115 °C were reported in another study (Demircilioğlu et al., 2019). 

The mechanical response was similar in all tests, with elastic moduli between 23 and 26 GPa, 

excluding any structural damage during loading or heating processes, (del Moral et al, 2021). 

However, severe changes in the piezoresistive response (see Figure 4) were observed, and the 

gauge factor (FG) at 60 °C was four times that at 0 °C. A clear increasing trend in FG was noticed 

upon heating, particularly at the highest temperature level. No specific measures were taken to 

prevent moisture exchange between the samples and the environment. Figure 4 graphically shows 

the gauge factors at different tested temperatures. 

 

 

 
Figure 4. Piezoresistive response of 1% NTC and 5% ABG1010 paste at different       

temperatures:    0 °C, 20 °C, 40 °C, and 60 °C. Resistance changes                                                

against deformation are represented to obtain the gauge factor. 

 

Previous research by Gomis et al. (2015) identified a turning point in these moisture changes at 60 

°C. During heating tests, it was observed that water in the pores of cement materials might undergo 

a state change and begin to evaporate. This alteration of the pore solution could have affected the 

balance between electrolytic and electronic conduction, enhancing the strain sensing performance 

in tests after slight drying (Allam et al., 2020; Chung, 2004; Vilaplana et al., 2013). 

Moreover, as suggested by Shifeng et al. (2007), temperature can increase the tunnel effect below 

100 °C, as electrons convert thermal energy into kinetic energy. Beyond the 100-130 °C limit, 

higher resistivity values are obtained due to internal pore pressure from increasing water vapor. 
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In our case, the specimens were heated to a maximum of 60 °C, resulting in surface drying. 

Consequently, electron mobility increased due to better electronic conduction and the tunnel effect, 

which may have resulted in enhanced piezoresistive response at these temperatures. 
 

3.2 Results of heating tests. 

Figure 5 shows the results obtained for cement paste with 1% CNT and 5% ABG1010 under a 20V 

AC and DC voltage. The average sample temperatures for both tests in °C and the monitored 

current (dashed lines) in amperes (A) are presented. In these tests, a temperature increase of +17 

°C for both types of current was achieved, which could be sufficient for de-icing systems with 

ambient temperatures above -15 °C. 

 

 
Figure 5. Ambient temperature (T env), specimen´s average temperature (T paste), both in °C, 

and monitored current (dashed lines), in A, versus time (in hours), for heating tests of cement 

paste in AC and DC with a fixed voltage of 20 V. 

 

Figure 6 shows the temperature of six heating tests with three different samples from different 

mixtures with the same voltage (40V) in DC and AC. As can be seen, the results are very consistent, 

confirming reproducibility (same behavior of different samples under the same test). 

As can be seen, doubling the applied voltage implies doubling the electric current, which implies 

a constant resistivity of the compounds in the temperature range shown (Farcas et al., 2021). On 

the other hand, the maximum temperature reached at 40 V (AC and DC) is approximately 3.3 times 

higher than the maximum temperature reached at 20 V (AC and DC). 
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Figure 6 Ambient temperature (T env), specimen´s average temperature (T paste), both in °C, and 

monitored current (dashed lines), in A, versus time (in hours), for heating tests of cement paste in 

AC and DC with a fixed voltage of 40 V. 

 

Table 2. Summary of electrical characteristics (resistivity, type of current, and applied voltage), 

temperature variation, and average power. 

Resistivity 

(ohm·cm) 
AC/DC 

Voltage 

(V) 

Current 

(A) 

ΔT 

(°C) 

Average Power 

(W/m2) 

67 DC 20 0.33 17.10 304 

64 AC 20 0.31 17.00 310 

64 DC 40 0.64 53.60 1267 

67 DC 40 0.62 53.20 1228 

67 DC 40 0.62 54.30 1224 

66 AC 40 0.63 54.40 1230 

64 AC 40 0.64 54.80 1273 

63 AC 40 0.65 55.70 1294 

 

Table 2 summarizes the electrical characteristics (resistivity, type of current, and applied fixed 

voltage), temperature variation, and the energy characteristic, the average power, of the heating 

tests. In all cases, significant temperature increases can be obtained with relatively small voltage 

and electric current. Indeed, the type of current applied does not seem to play a significant role in 

the thermal behavior and energy performance of this material. The resistivity of the samples 

remains stable under all conditions. 
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4. CONCLUSIONS 
 

• The feasibility of using cement paste sensors for strain sensing at different temperatures has 

been successfully demonstrated. 

• A slight increase in resistivity with temperature was observed in the strain sensing tests. 

Furthermore, the increase in temperature (between 0 and 60 °C) led to higher gauge factor 

(FG) values. 

• The feasibility of the heating function in electrically conductive cement pastes with the 

addition of 1% CNT + 5% ABG1010 has been verified, through the application of both 

direct current (DC) and alternating current (AC), with negligible differences in the behavior 

of both currents. 

• The results have shown that cement paste samples applied with a 20 V voltage could 

increase their temperature by +17 °C. Therefore, these compounds would be feasible for 

de-icing and prevention applications in locations with an ambient temperature of -15 °C. 
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