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RESUMEN

Este articulo plantea el fundamento y evolucion en la investigacion desarrollada de las principales
funciones desarrolladas con materiales cementicios conductores. Los hormigones conductores
multifuncionales representan una innovacion en el campo de los materiales cementicios, con
capacidades no solo estructurales, sino también eléctricas, térmicas y como sensor. Las funciones
planteadas son: a) Funcion de percepcion de la deformacion y del dafio estructural de una estructura al
estar sometida esfuerzos, sin llevar algun sensor adherido o embebido en él mismo. b) Funcién de
calefaccion y deshielo por efecto Joule para aplicaciones como deshielo o calefaccion en edificaciones.
¢) Funcién de apantallamiento de campos electromagnéticos (EMI) de la propia estructura conductora.
Palabras clave: hormigén conductor, multifuncionalidad, piezorresistividad, calefaccion y deshielo,
apantallamiento.
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Multifunctional conductive concretes: advances, applications, and challenges
for smart infrastructure.

ABSTRACT

This article presents the foundations and evolution of research into the main functionalities
developed using conductive cementitious materials. Multifunctional conductive concrete
represents an innovation in the field of cement-based materials, exhibiting not only structural
capabilities but also electrical, thermal, and sensing functions. The addressed functions are: a)
strain and structural damage sensing in a load bearing structure without the need for any attached
or embedded sensor; b) heating and de-icing function through the Joule effect, for applications
such as surface de-icing or building heating; and c) electromagnetic interference (EMI) shielding
provided by the conductive structure itself.

Keywords: conductive concrete, multifunctionality, piezoresistivity, heating and defrosting,
shielding.

Concretos condutores multifuncionais: avancos, aplicacOes e desafios para
uma infraestrutura inteligente.

RESUMO

Este artigo apresenta os fundamentos e a evolucdo das pesquisas sobre as principais
funcionalidades desenvolvidas com materiais cimenticios condutivos. Concretos condutivos
multifuncionais representam uma inovagdo no campo dos materiais cimenticios, apresentando nao
apenas capacidades estruturais, mas também propriedades elétricas, térmicas e sensoriais, atuando
como materiais auto-sensores. As funcdes propostas sao: a) Funcao de percepcdo de deformacdes
e danos estruturais: capacidade de detectar deformacgdes e danos em uma estrutura submetida a
esforcos, sem a necessidade de sensores aderidos ou embutidos no material. b) Funcdo de
aquecimento e degelo por efeito Joule: utilizada em aplicagcbes como aquecimento resistivo (por
exemplo, degelo ou aquecimento de edificacdes e infraestruturas). ¢) Funcéo de blindagem contra
interferéncia eletromagnética (EMI): baseada no efeito de blindagem que a prépria estrutura
condutiva exerce sobre o campo eletromagnético que a atravessa.

Palavras-chave: concreto condutivo, multifuncionalidade, piezorresistividade, aquecimento e
descongelamento, blindagem.
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1. INTRODUCCION

Durante casi 2000 afios, el hormigon ha sido utilizado principalmente como material estructural,
apreciado fundamentalmente por su capacidad para soportar cargas. Como material dieléctrico, es
decir, mal conductor de la electricidad, la adicion de materiales conductores como puede ser fibra
de carbono, polvo de grafito o fibras de acero, lo transforma en un material conductor,
estableciéndose asi la posibilidad de realizar mas funciones aparte de la estrictamente estructural,
es decir, transformarse en un material multifuncional. Entre las funciones que puede desarrollar un
material cementicio conductor se pueden enumerar las siguientes:

a) Funcion de percepcién de la deformacion en régimen elastico de una estructura al estar
sometida a un esfuerzo, sin llevar algin sensor adherido o embebido en él mismo (D’Alessandro
et al. 2016).

b) Funcion de percepcidn del dafio estructural. La deteccion en tiempo real permite diferenciar
entre dafos estacionarios, evolutivos, permanentes o reversibles, (Baeza et al. 2013; Chung, 2024;
Galao et al. 2014; Konsta-Gdoutos and Aza, 2014).

c) Funcion de calefaccion y deshielo. Calefaccion por resistencia (por ejemplo, deshielo y
calefaccion en edificaciones, (Anur Oumer et al. 2024; D.D.L. Chung, 2004a; Yehia and Tuan
1999).

d) Funcion de apantallamiento EMI. Esta funcién se basa en el apantallamiento que una
estructura conductora ejerce sobre el campo electromagnético que la atraviesa (Chung, 2000;
Kumar et al. 2021; Zornoza et al. 2010).

e) Funcién de &nodo para extraccién electroquimica de cloruros y proteccion catddica. Esta
funcién se basa en la utilizacién de una pasta de cemento conductora que actie como anodo para
la aplicacion de la técnica de extraccion electroquimica de cloruros y la proteccion catodica
(Bertolini et al. 2004; J. Carmona, Garcés, and Climent, 2015; Pérez, Climent, and Garcés, 2010;
Tritthart, 1998; Vennesland and Opsahl, 1989).

Los materiales cementicios han recibido gran atencién a consecuencia de sus propiedades
mecanicas y de su importancia como materiales estructurales. Sin embargo, se reconoce
continuamente la necesidad de un material estructural capaz de contener funciones no estructurales
reteniendo buenas propiedades estructurales. No obstante, la necesidad de que una estructura sea
capaz de aportar funciones no estructurales manteniendo unas buenas propiedades estructurales, es
una realidad que esta siendo reconocida de forma creciente. Esto es debido a que el uso de un
material estructural multifuncional (es decir, un material estructural que engloba a un material
funcional no estructural) en lugar de una combinacion de materiales estructurales no funcionales y
materiales funcionales no estructurales, reduce costes, mejora la durabilidad y la capacidad de
reparacion, aumenta el volumen funcional, evita la degradacion mecanica y simplifica el disefio
(Chung, 2024).

El hormigon conductor multifuncional se ha desarrollado como una respuesta a la necesidad de
materiales estructurales capaces de interactuar con su entorno de forma activa. Esta capacidad se
logra mediante la incorporacion de aditivos conductores en la matriz cementicia, los cuales
permiten que el hormigén no solo soporte cargas, sino que también transmita sefiales eléctricas,
genere calor o trabaje como sensor para aplicaciones de monitorizacion de la salud estructural
(SHM, por sus siglas en inglés). Esta multifuncionalidad lo posiciona como un componente clave
en el desarrollo de infraestructuras inteligentes y resilientes (Qin et al. 2024). Su implementacion
a gran escala aun enfrenta desafios importantes, como el costo de los materiales nanoestructurados,
la necesidad de electrodos cableados y la dificultad de lograr una dispersién uniforme de las
adiciones conductoras (ver Figura 1).
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Figura 1. (a) Aglomeracion de fibras debido a una pobre dispersion de fibras. (b) Probeta con
orientacion preferente de fibras a lo largo del eje longitudinal. (c) Imagen SEM de una pasta de
cemento alkalino con fibras de carbono (Vilaplana et al. 2016).

Sin embargo, los avances en investigacion de materiales y procesos constructivos ofrecen un
panorama prometedor para su adopcion. El desarrollo de estos materiales tendrd un impacto sobre
las industrias relacionadas con la construccion, calefaccion, transporte de energia, centrales
eléctricas, comunicacion telefonica, industria electronica y seguridad (Segundo et al. 2021; Song,
Li, and Xu, 2024).

2. PIEZORRESISTIVIDAD EN MATERIALES CEMENTICIOS
CONDUCTORES: SENSORES DE DEFORMACION Y DE DANO.

La funcion de percepcion de la deformacion es la capacidad de un material estructural para detectar
su propia deformacion cuando esta sometido a una carga externa. La percepcion de deformaciones
(que esta relacionada con la percepcion de tensiones, pero es diferente a la percepcion de dafos)
resulta importante en aspectos como el control de vibracion estructural, SHM o en la
monitorizacion y control del trafico.

Las aplicaciones convencionales de los sensores de tension o deformacion abarcan desde sensores
para componentes de la industria aerondutica o del automavil, hasta sensores para estructuras de
ingenieria civil, como los viaductos, incluso sensores de control de peso del trafico en autopistas
sin necesidad de detener los vehiculos. Dentro de la primera categoria se tiende a colocar pequefios
sensores (normalmente pastas 0 morteros de cemento) que deben competir con sensores de presion
de silicio. En los otros casos se puede ir a sensores mayores (por ejemplo, elementos prefabricados
de hormig6n o mortero) compitiendo con sensores acusticos, de silicio, neumaticos o inductivos
(Baeza et al. 2011; Ivorra et al. 2010; Shi and Chung, 1999).

Se ha observado que los materiales cementicios con una adicién de fibras cortas de carbono,
nanofibras de carbono o nanotubos de carbono, son capaces de percibir su propia deformacion, ver
Figura 2. Esto es posible gracias a las variaciones producidas en su resistividad eléctrica (Camacho-
Ballesta et al. 2016). En ensayos realizados en laboratorio se ha registrado que bajo tensiones de
traccion la resistividad aumenta, debido a la apertura de micro-fisuras o incluso al arrancamiento
de fibras dentro de la matriz. Esto es posible gracias a las variaciones producidas en su resistividad
eléctrica (Han, Ding, and Yu, 2015). Por el contrario, al someter el material a esfuerzos de
compresion se obtiene el efecto opuesto, de disminucion de resistividad, que se relaciona con el
reacoplamiento de las fibras al cerrarse las microfisuras. Este fendmeno electromecanico se conoce
como piezorresistividad, y nos permite utilizar medidas de resistencia eléctrica (tanto de corriente
directa, DC, como corriente alterna, AC) para monitorizar el estado de deformacion de las probetas,
actuando el propio material cementicio como sensor de deformacion.
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Figura 2. Imagenes de fibras de carbono (izquierda) y nanofibras de carbono (centro y derecha)
embebidas en matrices cementicias.

Uno de los parametros més interesantes del fendmeno de percepcion de la deformacion es la
méaxima y minima cantidad de material conductor necesario para observar este comportamiento.
Se define el umbral de percolacion como la minima cantidad de fibras necesaria para producir un
camino conductor continuo a través del material, es decir, para asegurar el contacto entre fibras sin
que haya discontinuidades. A partir de este punto mayores adiciones de material conductor no
implican variaciones significativas de la conductividad eléctrica del material. EI umbral de
percolacion se expresa normalmente como porcentaje en masa 0 en volumen respecto de la cantidad
de cemento en la mezcla. Antes de alcanzar el umbral de percolacion, con pequefias cantidades de
adiciones conductoras, la resistencia eléctrica del compuesto disminuye abruptamente, ver Figura
3, pudiendo la resistividad del material llegar a ser del orden de pocos ohm-cm en algunos casos.
En el caso de fibras de carbono cortas, para un determinado porcentaje en volumen, el umbral de
percolacion depende en gran medida de la longitud de las fibras empleadas y de la relacion de
aspecto, y se sitda habitualmente entre 0.1% y 0.5%, en volumen. Cuando la longitud de la fibra
aumenta, el umbral de percolacion disminuye. Es de destacar que no es imprescindible llegar al
umbral de percolacion para conseguir la funcion de percepcion de la deformacion en el material
compuesto, ya que no es necesario alcanzar elevadas conductividades para observar el
comportamiento piezorresistivo (Baeza et al. 2010).
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Figura 3. Deteccion del umbral de percolacion a través de la resistividad en una pasta de cemento
con adicidn de fibras de carbono de 3 mm, 6mmy 12mm de longitud. FC % se corresponde con
el porcentaje de adicion de fibras de carbono, y PAN hace referencia al tipo de fibra de carbono

identificado por su precursor (poliacronitrilo).

En particular, el factor de galga 6ptimo —definido como la sensibilidad a la deformacidn expresada
como el cambio relativo en la resistividad por unidad de deformacion—se alcanza tipicamente
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cerca del umbral de percolacion. Més all& de este punto, el factor de galga tiende a disminuir a
medida que la red conductora se vuelve mas estable y menos sensible a la deformacion (Garcia-
Macias et al. 2017).

Las fibras no son los sensores, simplemente potencian la piezorresistividad del material compuesto,
que es el verdadero sensor. Por tanto, siempre sera preferible la menor cantidad de material
conductor empleado, ya que conlleva menores costes de fabricacion y mejor trabajabilidad. La
Figura 4 muestra un ejemplo de como se relaciona la resistencia eléctrica del material cementicio
conductor con la tensiony la deformacion a la que se somete en ensayos de compresion, en régimen
elastico (del Moral et al. 2021). Se observa una casi perfecta correlacion entre los parametros
mecanicos Yy eléctricos. Esto permitiria claramente poder determinar con cierta precision el estado
tensional de un elemento estructural conociendo su resistencia eléctrica en un instante dado.
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Figura 4. Ensayos de percepcion de la deformacion con pastas de cemento dopadas con adiciones
hibridas (1% nanotubos de carbono y 5% polvo de grafito) tras 28 dias de curado saturado en
agua. (a) y (b) muestra la resistencia eléctrica (ohm) y la deformacion (microdeformaciones
unitarias) frente al tiempo, para ensayo ciclico de carga y descarga, y para cargas estaticas,
respectivamente; (c) muestra el cambio fraccional de la resistencia eléctrica (AR/Ro) frente a la
deformacion unitaria (mm/mm). (Adaptado de del Moral et al. 2021)

Como se ha mencionado anteriormente, a la hora de cuantificar el nivel de percepcion del material
por efecto piezorresistivo se utiliza el denominado factor de galga. Al igual que en las galgas
extensométricas (de constantan o cromo-niquel), se define el factor de sensibilidad de la galga
como una constante K que es la relacion entre la variacion unitaria de la resistividad y la
deformacion unitaria longitudinal del hilo, cuando la galga esta sometida a una deformacion.
Matematicamente el factor de galga () se expresa como:

dp
— P
’1_dL
L
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siendo dp/p el cambio fraccional de la resistividad eléctrica, y dL/L corresponde a la deformacion
axial en el caso de un estado de esfuerzo unidimensional.

El cambio de la resistencia eléctrica del material bajo esfuerzos se debe a la modificacion que sufre
la resistividad del material, es decir, que es una propiedad intrinseca del material, lo que posibilita
gue se pueda observar este comportamiento. En la Figura 5 se presentan diferentes formas de
aplicacion de los denominados compuestos cementicios autodetectables (en bulk, es decir, siendo
el propio material estructural el sensor, con sensores continuos en la cara superior e inferior, o bien
con pequefios sensores adheridos) (Han et al. 2015).
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Figura 5. Formas de aplicacion de compuestos cementicios autodetectables, publicado por Han,
B. etal., 2015, en Elsevier. (Adaptado de Han et al. 2015)

La deteccion temprana del dafio estructural es un factor clave para la prevencion de lesiones
mayores en la estructura. Esto requiere que el sistema de deteccion registre los dafios que se
producen en el material a nivel microscopico. Los estudios recientes han mostrado que estos
materiales pueden integrarse eficientemente con tecnologias de SHM, reduciendo los costos de
mantenimiento y aumentando la seguridad en tiempo real. (Baeza et al. 2013; Galao et al. 2014;
Konsta-Gdoutos and Aza 2014).

Se han desarrollado diferentes aplicaciones utilizando pastas conductoras como sensores en
elementos estructurales reales. Asi, Garces et al. instrumentalizaron una viga de hormigén armado
mediante distintos sensores de pasta de cemento con fibras cortas de carbono, ver Figura 6. La
correlacion lineal entre deformacion y resistencia eléctrica es clara, (Garcés et al. 2010).
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Figura 6. (izquierda) Disposicion de galgas de pasta de cemento conductora en viga de hormigén
armado sometida a ensayo de flexotraccidn. (derecha) Esquema de la monitorizacién de la
deformacion y la resistencia eléctrica frente al tiempo de uno de los sensores adheridos a la viga
ensayada.

Como se ha planteado en la introduccion, la monitorizacién del trafico, parte esencial de la gestion
y control del trafico, implica la visualizacién en tiempo real del mismo, necesitando de sensores de
deformacion, que pueden ser Opticos, eléctricos, magnéticos o acusticos. Habitualmente los
sensores se encuentran adheridos o embebidos en el pavimento de las vias de transporte que se
quieren monitorizar. Las limitaciones de este tipo de sensores son: (i) un alcance limitado, (ii) una
escasa durabilidad, y (iii) un coste demasiado elevado como para permitir un uso extensivo de los
mismos. Gracias a una nueva tecnologia se puede emplear el mismo hormigén del firme como
sensor, sin necesidad de sensores adheridos o embebidos. Puesto que el propio material estructural
es el sensor, se puede controlar la infraestructura completa, con una gran durabilidad y un pequefio
incremento de coste, solucionando las tres limitaciones expuestas anteriormente para los sensores
tradicionales, ver Figura 7 (Birgin et al. 2022; Han et al. 2015; Shi and Chung 1999).

E\/on_llltec:ll;izzslon del dario estructural: \ Almacenamiento de datos
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Deteccion del trafico: >

*  Velocidad
* Peso

* Flujo del trafico 3

Figura 7. Diagrama esquematico de la aplicacion de la funcion de percepcion en pavimentos de
hormigon. (Adaptado de Han et al. 2015)

Una nueva aplicacion de la funcion de percepcidn se ha desarrollado por Garcia -Macias y Ubertini
(Garcia-Macias and Ubertini 2019), mediante la utilizacion de ladrillos inteligentes para monitorear
edificios de mamposteria. De manera similar a un hormigon conductor sensible a sus
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deformaciones, y mediante la incorporacion de rellenos de acero especiales con alta resistencia a
la temperatura, los ladrillos piezorresistivos inteligentes se pueden utilizar como sensores de
tension, que se muestran en la Figura 8.
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Figura 8. Esquema de aplicacion de ladrillos inteligentes para control de estado de estructuras de
mamposteria. (Adaptado de Garcia-Macias and Ubertini 2019)

Los resultados de la simulacion numérica mostraron la posibilidad de este sensor para la deteccion
de dafios ya sea en edificios nuevos o edificios existentes, lo que tiene un interés significativo en
la proteccion de estructuras de mamposteria patrimoniales (Downey et al. 2018; Garcia-Macias and
Ubertini, 2019). Recientemente, una validacién en campo realizada sobre un edificio de
mamposteria a escala real ha confirmado adicionalmente la eficacia de los ladrillos inteligentes
para fines de SHM bajo condiciones ambientales reales (Meoni et al. 2025).

3. FUNCION DE CALEFACCION Y DESHIELO.

Una de las funciones mas prometedoras que puede realizar un material conductor a base de cemento
es la funcion de calefaccion. El aumento de la temperatura del material se basa en el efecto Joule
cuando se aplica una corriente eléctrica, en el cual el calor es generado por una corriente que fluye
a través de un conductor. La capacidad de generacion de calor de los materiales en base cemento
conductores de electricidad estd asociada con su resistencia, como lo expresa la primera ley de
Joule (Anur Oumer et al. 2024; Park et al. 2024). Controlando la potencia eléctrica suministrada,
se puede ajustar la temperatura del compuesto, ver Figura 9. Cuando este concepto se aplica a los
materiales estructurales, es posible utilizar el propio material para provocar el derretimiento del
hielo en su superficie (0 para evitar su formacion), (Farcas et al. 2021).
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Los sistemas de calefaccidn tradicionales de los edificios incluyen tuberias subterraneas, lamparas
de calor infrarrojas, fluidos calentados y energia solar. Sin embargo, estos sistemas tienen una
complicada construccion, un alto coste y una baja integridad con la estructura original, y por tanto
su aplicaciéon es limitada. Los compuestos en base cemento multifuncionales tienen una alta
integridad estructural con las estructuras originales (ver Figura 10). Es decir, el dafio inducido por
la expansion térmica durante el calentamiento es insignificante, ya que su coeficiente de expansion
térmica es similar al de las estructuras cementicias originales (Chung, 2004).

Figura 10. Aplicacion real de deshielo en pavimentos conductores. (Adaptado de Tuan and
Yehia, 2004).

El uso de estos materiales que pudieran ofrecer la posibilidad de aumentar su temperatura en
infraestructuras de transporte como puentes 0 aeropuertos evitaria el uso de sales corrosivas que
pudieran dafar las armaduras de acero, el propio hormigon y el ecosistema. Por lo tanto, estos
materiales podrian ser viables para aumentar la temperatura ambiente de estancias o bien para
prevenir la formacion de hielo, o producir el deshielo, en infraestructuras de ingenieria civil, entre
otras aplicaciones.

Los estudios iniciales sobre esta tematica, (Chung, 2004b; Yehia and Tuan, 1999) destacaron el
potencial de los compuestos cementicios conductores para aplicaciones de auto-calentamiento
mediante el efecto Joule. Posteriormente, se han incorporado diversas adiciones conductoras en
compuestos cementicios calefactables, y se han desarrollado amplios estudios experimentales en
laboratorio, (Farcas et al. 2021; Galao et al. 2016; Gomis et al. 2015) (ver Figura 11).

Hormigones conductores multifuncionales: avances, aplicaciones y desafios para una infraestructura inteligente.

Garcés Terradillos, P., Galao, O., Ubertini, F.



Revista ALCONPAT, 16 (1), 2026: 23 — 41

—— AT pasta_S1 40V DC —— AT pasta_S2 40V DC
----- Corriente S1 40V DC ----- Corriente_S2 40V DC
60
0,8
> 507wl -
2 f= : s _
g 404 ¢ \ <
2 - ‘ \ 5
5 301 ¢ : : 04 &
S - \ e
' - - =
& 20 § E | S
E ) + 0,2
10 - '
i
0 H 3 = 0
0 5 10 24 28 3548 52 55

Tiempo (h)
Figura 11. Variacién de la temperatura (°C) y corriente eléctrica (A) controlada durante ensayo,

frente al tiempo (h), de dos probetas de pasta de cemento, para tres ensayos consecutivos en
corriente continua a 40 V. (Farcas et al. 2021)

Diferentes estudios han permitido constatar la eficacia de estos materiales para aplicaciones de
calefaccion y deshielo (Rahman et al. 2022). Sigue habiendo problemas para su aplicacion en una
escala real. Por ejemplo, control de la temperatura del hormigdn, estableciendo dosificaciones que
optimicen su respuesta, para prevenir problemas de durabilidad en infraestructuras. Los estudios
de Deng presentaron un enfoque innovador para controlar activamente la temperatura en el
hormigon, optimizando una mezcla autorregulable disefiada para responder a variaciones extremas
de temperatura (Deng et al. 2023; Park et al. 2024) investigaron el uso de modulos de CNT de
pared multiple (MWCNT) embebidos en losas de hormigon para aplicaciones de deshielo a gran
escala, demostrando con éxito su eficiencia térmica en condiciones reales. Otro estudio interesante
fue la instalacion de una rampa de estacionamiento con calefaccion eléctrica utilizando hormigén
calefactable en China en condiciones de muy baja temperatura. Las superficies de la rampa
alcanzaron una densidad de potencia promedio de 200-300 W/m?, suficiente para una remocion
eficaz del hielo en condiciones invernales (Rao et al. 2018; Sassani et al. 2018) describieron toda
la secuencia de disefio, produccion, colocacion y evaluacion del desempefio del primer sistema de
pavimento calefactable de hormigdn eléctricamente conductor (ECON), mediante el uso de fibras
de carbono, en un aeropuerto de los Estados Unidos. En este proyecto se selecciond6 ECON
reforzado con fibras de carbono, apto para pistas y calles de rodaje. A pesar de la resistividad
elevada observada en el ECON preparado en planta, el sistema calefactable instalado ofrecié un
rendimiento confiable en pruebas invernales, generando de manera constante una densidad de
potencia superficial entre 300 y 350 W/m?, derritiendo eficazmente el hielo y la nieve acumulados.
En otro estudio (Li et al. 2022) se incorpord mezcla de grafito y fibra de carbono como aditivos
conductores, obteniendo un hormigon asfaltico conductor. El resultado fue el derretimiento del
hielo y la nieve en su superficie que habia sido vertido sobre tableros de puentes metalicos durante
el invierno. En 2022 los estudios de Li (Li et al. 2022) se centraron en habilitar el derretimiento
activo de hielo y nieve en superficies de hormigon asfaltico vertido sobre tableros de puentes
metalicos durante el invierno. Al incorporar grafito y fibra de carbono como aditivos conductores,
se desarroll6 una mezcla de hormigoén asfaltico conductor (CGA-10). El estudio examind como la
variacion en la cantidad de estos componentes influye en la resistividad eléctrica de la mezcla, asi
como en sus propiedades generales como pavimento. EIl desempefio térmico fue evaluado mediante
ensayos de calentamiento, y la eficiencia de deshielo fue analizada en pruebas en interiores. La
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combinacién de 0.4% de fibra de carbono y 30% de grafito logr6 establecer una red conductora
robusta en la matriz asfaltica. Las fibras de carbono contrarrestaron el impacto negativo del grafito
sobre el desempefio mecanico, reforzando la mezcla sin comprometer la conductividad. Bajo
condiciones de prueba, la mezcla optimizada CGA-10 alcanz6 una eficiencia de conversion térmica
del 78.85% y derritio el 50.03% del hielo en ensayos estandarizados de deshielo. El equipo de
Faneca (Faneca et al. 2020) realiza un estudio en 2020 tanto en laboratorio como en entornos
industriales con el objetivo de formular un hormigén conductor a base de fibras de carbono
recicladas, orientado a su uso en mobiliario urbano a temperaturas bajo cero, con resultados
prometedores. Recientemente, se ha llevado a cabo una revision exhaustiva de la investigacion
existente sobre el hormigon cementicio eléctricamente conductor (Anur Oumer et al. 2024),
denominado ECCC, abarcando métodos para mejorar la conductividad del hormigon, analisis del
comportamiento de transferencia térmica y evaluaciones de desempefio mediante experimentos de
laboratorio y ensayos a pequefia escala en campo.

Los resultados coinciden en que los pavimentos ECCC pueden mejorar significativamente la
gestion vial durante el invierno, incrementando la seguridad y reduciendo los retrasos por
condiciones meteoroldgicas, ademas de ofrecer una alternativa ecoldgica frente a los métodos
quimicos y mecanicos de deshielo. A pesar de estas ventajas, su implementacion generalizada ain
se ve limitada por desafios relacionados con el desarrollo de practicas constructivas rentables, la
garantia de durabilidad a largo plazo y la maximizacion de la eficiencia energética. Abordar estos
obstaculos sera fundamental para una adopcion mas amplia de la tecnologia ECCC.

4. TECNICAS ELECTROQUIMICAS UTILIZANDO PASTAS
CEMENTICIAS CONDUCTORAS COMO ANODO.

Cuando en una estructura de hormigon armado se produce la corrosidn de su armadura, es necesario
reparar la estructura si se desea prolongar su uso; de lo contrario, existe un alto riesgo de colapso.
El método tradicional para estructuras contaminadas por cloruros es la sustitucion de los elementos
estructurales afectados por la corrosion. Sin embargo, existen nuevos metodos, como la proteccion
catddica, la realcalinizacién electroquimica o la extraccion electroquimica de cloruros (EEC), que
permiten evitar la sustitucion de elementos estructurales. El interés de estas técnicas, conocidas
como Métodos de Mantenimiento Electroquimico, reside principalmente en su capacidad de
eliminar los agentes agresivos, manteniendo la cobertura del hormigdn y permitiendo la pasivacion
de las armaduras.

Consisten basicamente en aplicar un campo eléctrico entre la varilla de acero (el polo negativo o
catodo) y un electrodo depositado externamente en la superficie del hormigén (el polo positivo o
anodo), como puede ser una capa de material cementicio conductor por adicion de algin material
conductor como el grafito, por ejemplo. Dado que los cloruros son iones con carga negativa, el
campo de fuerza aplicado provoca su migracion desde la varilla hasta el electrodo exterior a través
de los poros del hormigdn. Posteriormente, manteniendo el campo eléctrico con menor intensidad,
esteramos aplicando una proteccion catodica de la armadura (ver Figura 12).

Anodo(+)—>disposicic’>n externa

-+

Fuente de alimentacion

Catodo(-)—armaduras de acero
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La Figura 13 muestra un ejemplo de EEC aplicada a probetas tipo columna (pilar) de seccién
circular, mostrandose los perfiles de CI- antes y después de la EEC, y el perfil de eficiencias, en el
que se empled un anodo de malla de Ti-RuO:z y una capa proyectada de pasta conductora de
cemento y grafito y sistema de humectacion constante. El promedio de eficiencia fue del 79,44%
(Carmona et al. 2015).
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Figura 13. Ejemplo de ensayo de extraccion de cloruros en pilares de base cilindrica, indicando el
% de cloruros respecto a la masa de cemento (anodo) asi como la eficiencia en % (catodo), frente
a la profundidad (mm) de la toma de muestra. (a) &nodo de malla de Ti-RuOz; (b) capa
proyectada de pasta conductora de cemento y grafito (Adapado de Carmona et al. 2015).

Las primeras investigaciones de las que se tiene conocimiento sobre este método se remontan a los
primeros afos 70. Lankard, Morrison y otros investigadores norteamericanos, en los laboratorios
de Batelle Columbus (Ohio), desarrollan los primeros ensayos de EEC sobre probetas cilindricas
de hormigdn armado fabricadas con adicion de cloruros (Lankard et al. 1975). Por su parte Slater,
del Departamento de Transportes de Topeka (Kansas), realiza las primeras aplicaciones practicas
sobre tableros de puentes contaminados por cloruros. En 1989 se inscribe la primera patente para
EE.UU, titulada “Removal of Chlorides from Concrete”, y denominada “NORCURE”, sobre un
método de extraccion de cloruros del hormigon armado (Vennesland and Opsahl, 1989). En 1998
Tritthart publica, como se ha dicho antes, una completa revision del método de EEC para resaltar
sus aspectos cientificos. Después de una detallada descripcién del método y de la historia de su
aplicacion, se detiene en los movimientos y la distribucion ionica provocados por el tratamiento,
medidos por los cambios de concentracion en la red de poros. Sigue un completo estudio sobre
efectos colaterales no deseados del método, como son las posibles reacciones arido-alcali, la
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disminucion de la adherencia entre acero y hormigon y la pérdida de resistencia a traccion del acero
por la accion del hidrégeno producido, (Tritthart, 1998). El grupo de Bertolini, Yu y Page dedica
sus investigaciones, en la aplicacion de estas técnicas, a los efectos del tratamiento sobre las
propiedades mecanicas aplicando densidades de corriente de un rango entre los 5 mA/mz, utilizados
en proteccion catodica, a los 5 A/m2 de la EEC (Bertolini, Yu and Page, 1996). En todos estos
trabajos el anodo externo se compone de malla de titanio embebida en capas de fibra de celulosa
revestidas por un geotextil y empapadas en una solucion saturada de Ca(OH)2. Andrade, Castellote
y otros, realizan el primer estudio sobre modelizacion matematica de la EEC. Desde la ecuacion
para el flujo i6nico de Nernst-Planck desarrollan mediante sus investigaciones formulas para
calcular el nimero de transporte de cloruros y del coeficiente de migracion, con el fin de modelizar
la eficiencia del tratamiento (Andrade et al. 1995). El equipo formado por Fajardo y Escadeillas,
entre otros, este equipo estudia la microestructura de la interfase acero-hormigén después de la
EEC mediante espectroscopia de rayos X y escaneado con microscopio electronico, (Fajardo,
Escadeillas and Arliguie, 2006). El equipo formado por Climent, Garcés y otros, en 2005 publican
un novedoso trabajo sobre la influencia que la disposicion de las barras del armado tiene en la
eficiencia de la EEC (Garcés et al. 2005). Posteriormente, este mismo equipo en 2006 publica otro
trabajo de estructura similar al anterior, pero con objetivos diferentes. En este caso se trataba de
averiguar la influencia sobre la eficiencia del método del punto de toma de muestras, de la densidad
de corriente y de la introduccion de paradas en el tratamiento, (Climent et al. 2006).

Es importante clarificar que la Proteccion Catodica se aplica a las construcciones ya contaminadas
por cloruros para controlar su grado de corrosion, y la Prevencion Catddica, para tratar nuevas
estructuras susceptibles de sufrir contaminacion por cloruros, con el objeto de incrementar su
resistencia a la corrosién y con ello, su vida util, mediante densidades de corriente mucho menores.
Lazzari y Pedeferri, en un articulo de referencia obligada, establece las consecuencias negativas de
estas técnicas y el modo de controlarlas; las condiciones operativas del potencial y la corriente, los
problemas relativos a la capacidad de extraccion, y la posibilidad de lograr la condicion de
proteccion sin caer en el riesgo de la fragilizacion por accién del hidrégeno en las estructuras de
hormigon pretensado. En este trabajo se incluyen asimismo ejemplos de disefio, ejecucion,
aplicacion y monitorizacion tanto de proteccién como de prevencion catodicas. (Lazzari and
Pedeferri 2006).

Por otra parte, es a finales de la década de los 90 cuanto se establece la posibilidad del uso de un
material cementicio conductor como anodo en la aplicacion de la técnica de proteccidn catddica.
Destacan 2 trabajos en relacion a este tema. Primero el llevado a cabo por Fu 'y Chung, en 1995(Fu
and Chung, 1995), un interesante trabajo sobre el empleo de morteros reforzados con fibras de
carbono como material de contacto para la PC. Encontraron que una pequefia adicion de fibras de
carbono al nuevo mortero que se aplica sobre la superficie del antiguo mortero a tratar mediante
PC, para servir de &nodo en el tratamiento, reduce tanto la resistividad del contacto como la
resistividad volumétrica del nuevo mortero. El segundo de Bertolini y colaboradores, en 2003, que
estudiaron la eficiencia de los &nodos formados por morteros cementicios conductores, en la PC
para el acero de las armaduras del hormigon. Estudiaron el comportamiento de estas capas haciendo
el papel de &nodo en el proceso de la PC. Se trata de morteros de cemento con la adicion de fibras
de carbono recubiertas de niquel, (Bertolini et al. 2004). Perez et al. son los autores de la primera
aplicacion de &nodos cementicios conductores en la aplicacion de la técnica de extraccion
electroquimica de cloruros, (Pérez et al. 2010).

5. OTRAS APLICACIONES.

Existe un gran nimero de aplicaciones distintas a las mencionadas. Por ejemplo, la toma de tierra
es necesaria en edificios y otras estructuras en las que estén funcionando equipos eléctricos. La
proteccion antirrayos es necesaria en edificios elevados. Algunos metales, como el acero, son
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habitualmente usados para estas aplicaciones. Sin embargo, el uso de hormigén conductor de la
electricidad para disminuir el volumen de metal requerido es interesante desde el punto de vista de
reduccion de costes, mejora de la durabilidad y simplificacion de la instalacion. (Chung, 2003).
Recientemente, la Dr. Chung ha publicado estudios relativos a propiedades capacitivas y
piezopermitivas de hormigones para la autodeteccion de tensiones (Chung and Ozturk, 2024;
Ozturk and Chung, 2024). Otros tantos esfuerzos se vienen destinando a aspectos energéticos del
hormigon multifuncional(Abden et al. 2024).

Finalmente, son destacables los esfuerzos iniciales para imprimir en 3D hormigones conductores
capaces de percibir su propia deformacién, ya que demuestran un potencial prometedor para la
creacion de estructuras en las que zonas localmente criticas puedan transformarse en nodos
sensores. Estos nodos podrian desempefiar un papel fundamental en la monitorizacion tanto del
proceso de impresion como de la funcionalidad y seguridad de la estructura a lo largo de su vida
atil (Liu et al. 2024; Sousa et al. 2024).

6. CONCLUSIONES Y PERSPECTIVAS.

El desarrollo de hormigones conductores con funcionalidades avanzadas representa un campo
emergente y prometedor dentro de la ingenieria de materiales para infraestructura. Estos materiales
no solo cumplen funciones estructurales tradicionales, sino que también incorporan capacidades
inteligentes que permiten responder activamente a estimulos del entorno. Entre las aplicaciones
mas destacadas se encuentran:

a) La monitorizacion estructural mediante piezorresistividad, medicion de deformaciones y la
deteccion de dafios, asi como la integracion con sistemas energéticos y sensores.

b) La funcion de calefaccion y deshielo por efecto Joule. Los pavimentos de hormigon
conductor con funcion de calefaccion y deshielo constituyen una alternativa prometedora
para infraestructuras inteligentes en climas frios. No obstante, es fundamental continuar con
la investigacién aplicada y experimental a gran escala para optimizar su desempefio,
garantizar su viabilidad econdémica y evaluar su impacto ambiental a largo plazo.

c) La funcion de anodo en la aplicacion de técnicas electroquimicas. La pasta de cemento
conductora se posiciona como una solucion prometedora para la implementacion de
técnicas electroquimicas mas eficaces y duraderas, al mismo tiempo que promueve la
integracion funcional entre los componentes del sistema y el sustrato estructural.

A pesar de los avances significativos en la formulacion y caracterizacidon de estos materiales, su
implementacion a gran escala ain enfrenta diversos desafios técnicos y econémicos. Entre ellos,
destacan la dificultad de dispersar homogéneamente los materiales conductores en la matriz
cementicia, el aumento de los costos asociados a los aditivos funcionales, el uso de electrodos de
contacto y cableados asi como la necesidad de asegurar la durabilidad y estabilidad de las
propiedades eléctricas en condiciones reales de servicio.

No obstante, las investigaciones actuales contintan explorando nuevas combinaciones de
materiales conductores (como nanotubos de carbono, grafeno, fibras metélicas y materiales
reciclados), asi como técnicas de fabricacion innovadoras, incluida la impresion 3D, que permitan
mejorar la eficiencia y reducir el impacto ambiental. En este contexto, el hormigon conductor se
perfila como un componente clave para el desarrollo de infraestructuras inteligentes, resilientes y
sostenibles en el futuro.
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