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RESUMO

Este artigo apresenta os fundamentos e a evolucdo das pesquisas sobre as principais funcionalidades
desenvolvidas com materiais cimenticios condutivos. Concretos condutivos multifuncionais
representam uma inovagdo no campo dos materiais cimenticios, apresentando ndo apenas capacidades
estruturais, mas também propriedades elétricas, térmicas e sensoriais, atuando como materiais auto-
sensores. As fungbes propostas séo: a) Funcdo de percepcdo de deformacdes e danos estruturais:
capacidade de detectar deformacdes e danos em uma estrutura submetida a esforcos, sem a necessidade
de sensores aderidos ou embutidos no material. b) Funcdo de aquecimento e degelo por efeito Joule:
utilizada em aplicacbes como aquecimento resistivo (por exemplo, degelo ou aquecimento de
edificacdes e infraestruturas). ¢) Funcdo de blindagem contra interferéncia eletromagnética (EMI):
baseada no efeito de blindagem que a prépria estrutura condutiva exerce sobre o campo
eletromagnético que a atravessa.

Palavras-chave: concreto condutivo, multifuncionalidade, piezorresistividade, aquecimento e
descongelamento, blindagem.
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Multifunctional conductive concretes: advances, applications, and challenges
for smart infrastructure.

ABSTRACT

This article presents the foundations and evolution of research into the main functionalities
developed using conductive cementitious materials. Multifunctional conductive concrete
represents an innovation in the field of cement-based materials, exhibiting not only structural
capabilities but also electrical, thermal, and sensing functions. The addressed functions are: a)
strain and structural damage sensing in a load bearing structure without the need for any attached
or embedded sensor; b) heating and de-icing function through the Joule effect, for applications
such as surface de-icing or building heating; and c) electromagnetic interference (EMI) shielding
provided by the conductive structure itself.

Keywords: conductive concrete, multifunctionality, piezoresistivity, heating and defrosting,
shielding.

Hormigones conductores multifuncionales: avances, aplicaciones y desafios
para una infraestructura inteligente.

RESUMEN

Este articulo plantea el fundamento y evolucion en la investigacion desarrollada de las principales
funciones desarrolladas con materiales cementicios conductores. Los hormigones conductores
multifuncionales representan una innovacién en el campo de los materiales cementicios, con
capacidades no solo estructurales, sino también eléctricas, térmicas y como sensor. Las funciones
planteadas son: a) Funcion de percepcién de la deformacion y del dafio estructural de una
estructura al estar sometida esfuerzos, sin llevar algun sensor adherido o embebido en él mismo.
b) Funcién de calefaccion y deshielo por efecto Joule para aplicaciones como deshielo o
calefaccion en edificaciones. c) Funcion de apantallamiento de campos electromagnéticos (EMI)
de la propia estructura conductora.

Palabras clave: hormigon conductor, multifuncionalidad, piezorresistividad, calefaccion y
deshielo, apantallamiento.
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1. INTRODUCAO

Por quase 2000 anos, o concreto tem sido usado principalmente como material estrutural,
valorizado sobretudo por sua capacidade de suportar cargas. Como material dielétrico, ou seja, um
mau condutor de eletricidade, a adicdo de materiais condutores como fibra de carbono, pé de grafite
ou fibras de aco o transforma em um material condutor, permitindo que ele desempenhe fungées

além de seu papel estritamente estrutural — em outras palavras, que se torne um material
multifuncional. Entre as funcdes que um material cimenticio condutor pode desempenhar estdo as
seguintes:

a) Funcao de perceber a deformacao no regime elastico de uma estrutura quando submetida a
tensdo, sem que haja qualquer sensor acoplado ou embutido nela (D’ Alessandro et al. 2016).

b) Funcdo de percepcéo de danos estruturais. A deteccdo em tempo real permite diferenciar
entre danos estacionarios, em evolugdo, permanentes ou reversiveis (Baeza et al. 2013; Chung,
2024; Galao et al. 2014; Konsta-Gdoutos and Aza, 2014).

¢) Funcdo de aquecimento e descongelamento. Aquecimento por resisténcia (por exemplo,
descongelamento e aquecimento em edificios, (Anur Oumer et al. 2024; D.D.L. Chung, 2004a;
Yehia and Tuan 1999)).

d) Funcéo de blindagem EMI. Esta funcdo baseia-se na blindagem que uma estrutura condutora
exerce sobre o campo eletromagnético que a atravessa. (Chung, 2000; Kumar et al. 2021; Zornoza
et al. 2010).

e) Func¢do anddica para extracao eletroquimica de cloreto e protecdo catddica. Esta funcdo
baseia-se na utilizacdo de uma pasta de cimento condutora que atua como anodo para a aplicacédo
da técnica de extracdo eletroquimica de cloreto e protecdo catodica (Bertolini et al. 2004; J.
Carmona, Garcés, and Climent, 2015; Pérez, Climent, and Garcés, 2010; Tritthart, 1998;
Vennesland and Opsahl, 1989).

Os materiais cimenticios tém recebido consideravel atencdo devido as suas propriedades mecanicas
e a sua importancia como materiais estruturais. No entanto, a necessidade de um material estrutural
capaz de incorporar funcbes ndo estruturais, mantendo boas propriedades estruturais, é cada vez
mais reconhecida. 1sso ocorre porgque o uso de um material estrutural multifuncional (ou seja, um
material estrutural que incorpora um material funcional ndo estrutural) em vez de uma combinagao
de materiais funcionais e ndo estruturais reduz custos, melhora a durabilidade e a reparabilidade,
aumenta o volume funcional, previne a degradacdo mecénica e simplifica o projeto (Chung, 2024).
O concreto condutor multifuncional foi desenvolvido em resposta a necessidade de materiais
estruturais capazes de interagir ativamente com o ambiente. Essa capacidade é alcancada pela
incorporacgdo de aditivos condutores na matriz cimenticia, permitindo que o concreto ndo apenas
suporte cargas, mas também transmita sinais elétricos, gere calor ou funcione como um sensor para
aplicacbes de monitoramento da integridade estrutural (SHM). Essa multifuncionalidade o
posiciona como um componente-chave no desenvolvimento de infraestruturas inteligentes e
resilientes (Qin et al. 2024). Sua implementacdo em larga escala ainda enfrenta desafios
significativos, como o custo dos materiais nanoestruturados, a necessidade de eletrodos com fios e
a dificuldade de se obter uma dispersao uniforme dos aditivos condutores (ver Figura 1).
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Figura 1. a) Aglomeracéo de fibras devido a ma dispersdo das mesmas. (b) Amostra com
orientacéo preferencial das fibras ao longo do eixo longitudinal. (c) Imagem de SEM de uma
pasta de cimento alcalino com fibras de carbono.(Vilaplana et al. 2016).

No entanto, os avanc¢os na pesquisa de materiais e nos processos de construcdo oferecem uma
perspectiva promissora para a sua adogdo. O desenvolvimento desses materiais terd impacto em
industrias relacionadas a construcdo, aquecimento, transporte de energia, usinas elétricas,
telecomunicacdes, eletrénica e segurancga (Segundo et al. 2021; Song, Li, and Xu, 2024).

2. PIEZORESISTIVIDADE EM MATERIAIS CIMENTICIOS
CONDUTORES: SENSORES DE DEFORMACAO E DANO.

A percepcdo de deformacdo é a capacidade de um material estrutural detectar sua propria
deformacdo quando submetido a uma carga externa. A percepcdo de deformacdo (que esta
relacionada a percepgao de tensdo, mas difere da percepg¢do de danos) é importante em areas como
monitoramento de vibracgéo estrutural (SHM) e monitoramento e controle de trafego.

As aplicagdes convencionais de sensores de deformacéo variam desde sensores para componentes
nas industrias aeroespacial ou automotiva até sensores para estruturas de engenharia civil, como
viadutos, e até mesmo sensores de controle de peso em rodovias que ndo exigem que os veiculos
parem. Na primeira categoria, tendem a ser usados sensores pequenos (geralmente pastas de
cimento ou argamassas), que competem com sensores de pressdo de silicio. Nos outros casos,
podem ser usados sensores maiores (por exemplo, elementos pré-fabricados de concreto ou
argamassa), que competem com sensores acusticos, de silicio, pneumaticos ou indutivos (Baeza et
al. 2011; Ivorra et al. 2010; Shi and Chung, 1999).

Tem-se observado que materiais cimenticios com adicao de fibras curtas de carbono, nanofibras de
carbono ou nanotubos de carbono sdo capazes de detectar sua propria deformacéo (ver Figura 2).
Isso é possivel devido as variagdes em sua resistividade elétrica (Camacho-Ballesta et al. 2016).
Em testes de laboratério, registrou-se que, sob tensédo de tracéo, a resistividade aumenta devido a
abertura de microfissuras ou mesmo ao desprendimento de fibras na matriz. Isso é possivel gragas
as variacGes em sua resistividade elétrica (Han, Ding, and Yu, 2015). Por outro lado, quando o
material ¢ submetido a tensdo de compressdo, obtém-se o efeito oposto: uma diminuicdo da
resistividade, relacionada ao reacoplamento das fibras a medida que as microfissuras se fecham.
Esse fendmeno eletromecénico é conhecido como piezoresistividade e permite o uso de medi¢oes
de resisténcia elétrica (tanto em corrente continua, DC, quanto em corrente alternada, AC) para
monitorar o estado de deformacao dos corpos de prova, com o proprio material cimenticio atuando
como um sensor de deformacéo.
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Figura 2. Imagens de fibras de carbono (esquerda) e nanofibras de carbono (centro e direita)
incorporadas em matrizes cimenticias.

Um dos parametros mais interessantes do fenémeno de percepcdo de deformacdo é a quantidade
maxima e minima de material condutor necessaria para observar esse comportamento. O limiar de
percolacao é definido como a quantidade minima de fibras necesséria para produzir um caminho
condutor continuo atraveés do material, ou seja, para garantir o contato entre as fibras sem
descontinuidades. Acima desse ponto, adi¢Oes adicionais de material condutor ndo resultam em
variacOes significativas na condutividade elétrica do material. O limiar de percolacdo é
normalmente expresso como uma porcentagem em massa ou volume em relagdo a quantidade de
cimento na mistura. Antes de atingir o limiar de percolagdo, com pequenas quantidades de adi¢des
condutoras, a resisténcia elétrica do compdsito diminui acentuadamente (ver Figura 3), e a
resistividade do material pode atingir a ordem de alguns ohm-cm em alguns casos. No caso de
fibras de carbono curtas, para uma dada porcentagem em volume, o limiar de percolagéo depende
em grande parte do comprimento das fibras utilizadas e da relacdo de aspecto, e geralmente fica
entre 0,1% e 0,5% em volume. A medida que o comprimento da fibra aumenta, o limiar de
percolacdo diminui. E importante ressaltar que atingir o limiar de percolacio néo é essencial para
obter a deteccdo de deformacdo no material composito, visto que altas condutividades ndo sao
necessarias para observar o comportamento piezoresistivo. (Baeza et al. 2010).
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Figura 3. Deteccdo do limiar de percolacdo por meio da resistividade em uma pasta de cimento
com a adicéo de fibras de carbono de 3 mm, 6 mm e 12 mm de comprimento. FC % corresponde
a porcentagem de adicdo de fibra de carbono e PAN refere-se ao tipo de fibra de carbono
identificado por seu precursor (poliacrilonitrila).

Em particular, a sensibilidade a deformacdo ideal — definida como a variacdo relativa da

resistividade por unidade de deformacdo — € tipicamente alcancada proximo ao limiar de
percolacdo. Acima desse ponto, a sensibilidade a deformacéo tende a diminuir a medida que a rede
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condutora se torna mais estavel e menos sensivel a deformacéo. (Garcia-Macias et al. 2017).

As fibras ndo sdo os sensores; elas simplesmente aumentam a piezoresistividade do material
compdsito, que € o sensor propriamente dito. Portanto, o uso de material menos condutor é sempre
preferivel, pois leva a custos de fabricacdo mais baixos e melhor trabalhabilidade. A Figura 4 4
mostra um exemplo de como a resisténcia elétrica do material cimenticio condutor se relaciona
com a tensdo e a deformacéo a que é submetido em ensaios de compressao sob condi¢oes elasticas
(del Moral et al. 2021). Observa-se uma correlacdo quase perfeita entre 0s pardmetros mecanicos
e elétricos. Isso permitiria, claramente, a determinacdo bastante precisa do estado de tensdo de um
elemento estrutural, conhecendo-se sua resisténcia elétrica em um dado momento.
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Figura 4. Testes de percepgéo de deformacdo com pastas de cimento dopadas com adi¢Oes
hibridas (1% de nanotubos de carbono e 5% de po de grafite) apds 28 dias de cura em agua
saturada. (a) e (b) mostram a resisténcia elétrica (ohm) e a deformacdo (microdeformacGes
unitarias) em funcédo do tempo, para testes de carga e descarga ciclicas e para cargas estaticas,
respectivamente; (c) mostra a variacdo fracionaria da resisténcia elétrica (AP /R0) em funcdo da
deformacgdo (mm/mm). (Adaptado de del Moral et al. 2021)

Como mencionado anteriormente, o fator de calibre é usado para quantificar o nivel de
sensibilidade piezoresistiva de um material. Semelhante aos extensdémetros (feitos de constantan
ou niquel-cromo), o fator de sensibilidade do calibre € definido como uma constante K, que é a
razdo entre a variacdo unitaria na resistividade e a deformacao longitudinal unitaria do fio quando
0 extensémetro é submetido a deformacdo. Matematicamente, o fator de calibre (L) € expresso
como:

dp

_ P
A_dL
L
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sendo dp/p a mudanca fracionéria da resistividade elétrica, e dL /L corresponde & deformacéo axial
no caso de um estado de tensdo unidimensional.

A variacdo na resisténcia elétrica de um material sob tensdo deve-se a modificagdo da resistividade
do material; ou seja, trata-se de uma propriedade intrinseca do material, que permite a observacéo
desse comportamento. Na Figura 5 5 mostram-se diferentes métodos de aplicacdo dos chamados
compostos cimenticios autodetectaveis (em bulk, ou seja, o préprio material estrutural sendo o
sensor, com sensores continuos nas faces superior e inferior, ou com pequenos sensores acoplados)
(Han et al. 2015).

|
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Figura 5. Métodos de aplicacdo de compostos cimenticios. autodetectaveis, publicado por Han, B.
et al., 2015, na Elsevier.(Adaptado de Han et al. 2015)

A deteccéo precoce de danos estruturais é fundamental para evitar maiores prejuizos a estrutura.
Isso requer um sistema de deteccéo capaz de registrar os danos ao material em nivel microscépico.
Estudos recentes demonstraram que esses materiais podem ser integrados de forma eficiente as
tecnologias de monitoramento e manutencdo estrutural (SHM), reduzindo custos de manutencado e
aumentando a seguranga em tempo real (Baeza et al. 2013; Galao et al. 2014; Konsta-Gdoutos and
Aza 2014).

Diversas aplicagfes foram desenvolvidas utilizando pastas condutoras como sensores em
elementos estruturais reais. Por exemplo, Garces et al. instrumentaram uma viga de concreto
armado utilizando diferentes sensores de pasta de cimento com fibras curtas de carbono (ver Figura
6). A correlacdo linear entre deformacao e resisténcia elétrica é evidente (Garcés et al. 2010).
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Figura 6. (esquerda) Disposicdo de extensémetros de pasta de cimento condutora em uma viga de
concreto armado submetida a um ensaio de tracdo por flexdo. (direita) Esquema do
monitoramento da deformacéo e da resisténcia elétrica ao longo do tempo de um dos sensores
fixados a viga ensaiada.

Como mencionado na introducdo, o monitoramento de trafego, parte essencial da gestao e controle
de trafego, envolve a visualizacdo em tempo real do trafego, exigindo sensores de deformacéo, que
podem ser dpticos, elétricos, magnéticos ou acusticos. Esses sensores sdo normalmente fixados ou
embutidos no pavimento das vias de transporte monitoradas. As limitacdes desse tipo de sensor
sdo: (i) alcance limitado, (ii) baixa durabilidade e (iii) custo muito elevado para permitir o uso em
larga escala. Gracas a uma nova tecnologia, o préprio concreto pode ser usado como sensor,
eliminando a necessidade de sensores fixados ou embutidos. Como o préprio material estrutural
atua como sensor, toda a infraestrutura pode ser monitorada com alta durabilidade e um aumento
minimo de custo, superando as trés limitagdes dos sensores tradicionais descritas acima (ver Figura
7 (Birgin et al. 2022; Han et al. 2015; Shi and Chung 1999).

(

Monitoramento de danos estruturais: "\
e Tensdo Armazenamento de dados

e Deformacéo
e Danos > __J
Deteccao de trafego:
e Velocidade
e Peso

e Fluxo de trafego J

Figura 7. Diagrama esquematico da aplicacdo da fungéo de percepgdo em pavimentos de
concreto.(Adaptado de Han et al. 2015)

Uma nova aplicacdo da funcdo de percepcdo foi desenvolvida por Garcia-Macias e Ubertini.
(Garcia-Macias and Ubertini 2019) Isso envolve o uso de tijolos inteligentes para monitorar
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edificios de alvenaria. Semelhantes ao concreto condutor, que € sensivel as suas deformacdes, e
incorporando cargas especiais de aco com alta resisténcia a temperatura, os tijolos piezoresistivos
inteligentes podem ser usados como sensores de deformagéo, como mostrado na Figura 8.

Estrutura POST-PROCESADO
monitorada

Pontos
monitorados

% Deteccéo
Mapeamen
, 2 Krigingﬁ de da:mos

1

O 0 ® Interpglagéo‘ N
Aquisicdo de dados % l’\.lfns /7

(processamento in-situ) \ """

Figura 8. Esquema da aplicacéo de tijolos inteligentes para monitoramento do estado de
estruturas de alvenaria. (Adaptado de Garcia-Macias e Ubertini 2019)

Os resultados da simulacdo numérica demonstraram o potencial deste sensor para a detec¢do de
danos em edificios novos e existentes, o que é de grande interesse para a protecdo de estruturas de
alvenaria histéricas (Downey et al. 2018; Garcia-Macias and Ubertini, 2019). Recentemente, a
validagdo em campo num edificio de alvenaria em escala real confirmou ainda mais a eficacia dos
tijolos inteligentes para a monitorizacgao estrutural e ambiental (SHM) em condicdes reais (Meoni
et al. 2025).

3. FUNCAO DE AQUECIMENTO E DESCONGELAMENTO

Uma das fungdes mais promissoras que um material condutor a base de cimento pode desempenhar
é 0 aquecimento. O aumento da temperatura do material baseia-se no efeito Joule quando uma
corrente elétrica é aplicada, no qual o calor é gerado pela corrente que flui através de um condutor.
A capacidade de geracdo de calor de materiais condutores de eletricidade & base de cimento esta
associada a sua resisténcia, conforme expresso pela primeira lei de Joule (Anur Oumer et al. 2024;
Park et al. 2024). Controlando a poténcia elétrica fornecida, a temperatura do composto pode ser
ajustada (ver Figura 9). Quando esse conceito € aplicado a materiais estruturais, € possivel usar o
préprio material para derreter gelo em sua superficie (ou para impedir sua formacgéo) (Farcas et al.
2021).

Concretos condutores multifuncionais: avancos, aplicacfes e desafios para uma infraestrutura inteligente. 31

Garcés Terradillos, P., Galao, O., Ubertini, F.



_ 3]

Revista ALCONPAT, 16 (1), 2026: 23 — 41

Os sistemas tradicionais de aquecimento de edificios incluem tubulacBes subterraneas, lampadas
de calor infravermelho, fluidos aquecidos e energia solar. No entanto, esses sistemas sdo complexos
de construir, caros e oferecem baixa integridade estrutural, limitando assim sua aplicacdo. Os
compositos multifuncionais a base de cimento exibem alta integridade estrutural com as estruturas
originais (ver Figura 10). Ou seja, 0s danos induzidos pela expansdo térmica durante o aquecimento
sdo negligenciaveis, uma vez que seu coeficiente de expansdo térmica é semelhante ao das
estruturas cimenticias originais (Chung, 2004).

Figura 10. Aplicacdo real de descongelamento em pavimentos condutivos (Adaptado de Tuan and
Yehia, 2004).

A utilizacdo de materiais que podem aumentar sua temperatura em infraestruturas de transporte,
como pontes ou aeroportos, evitaria 0 uso de sais corrosivos que poderiam danificar a armadura de
aco, o proprio concreto e o0 ecossistema. Portanto, esses materiais poderiam ser viaveis para
aumentar a temperatura ambiente de espacos, prevenir a formacédo de gelo ou promover o degelo
em obras de engenharia civil, entre outras aplicacgoes.

Os estudos iniciais sobre este tema destacaram o potencial dos (Chung, 2004b; Yehia and Tuan,
1999)compostos cimenticios condutores para aplicacfes de autoaquecimento utilizando o efeito
Joule. Posteriormente, varios aditivos condutores foram incorporados em compostos cimenticios
aqueciveis e extensos estudos experimentais foram conduzidos em laboratério (Farcas et al. 2021;
Galao et al. 2016; Gomis et al. 2015)(ver Figura 11).
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Figura 11. Variacdo da temperatura (°C) e da corrente elétrica controlada (A) durante o ensaio,
em funcédo do tempo (h), de dois corpos de prova de pasta de cimento, para trés ensaios
consecutivos em corrente continua a 40 V.(Farcas et al. 2021)

Diversos estudos confirmaram a eficacia desses materiais para aplicacdes de aquecimento e degelo
(Rahman et al. 2022). No entanto, ainda existem desafios para sua aplicacdo em escala real. Por
exemplo, o controle da temperatura do concreto por meio do desenvolvimento de misturas que
otimizem sua resposta e crucial para evitar problemas de durabilidade na infraestrutura. Os estudos
de Deng apresentaram uma abordagem inovadora para o controle ativo da temperatura no concreto,
otimizando uma mistura autorregulavel projetada para responder a variages extremas de
temperatura. (Deng et al. 2023; Park et al. 2024) Eles também investigaram o uso de modulos de
nanotubos de carbono de paredes multiplas (MWCNTS) incorporados em placas de concreto para
aplicacbes de degelo em larga escala, demonstrando com sucesso sua eficiéncia térmica em
condigdes reais. Outro estudo interessante envolveu a instalacdo de uma rampa de estacionamento
aquecida eletricamente com concreto aquecido na China, em condi¢Oes de temperaturas muito
baixas. As superficies da rampa atingiram uma densidade de poténcia média de 200-300 W/mg2,
suficiente para a remocdo eficaz do gelo em condicdes de inverno. (Rao et al. 2018; Sassani et al.
2018)Este estudo descreveu toda a sequéncia de projeto, producéo, instalagdo e avaliacdo de
desempenho do primeiro sistema de pavimento aquecido feito de concreto eletricamente condutor
(ECON) com fibras de carbono em um aeroporto dos EUA. Para este projeto, foi selecionado o
ECON reforcado com fibra de carbono, adequado para pistas de pouso e decolagem e pistas de
taxi. Apesar da alta resistividade observada no ECON pré-misturado, o sistema de aquecimento
instalado apresentou desempenho confiavel em testes de inverno, gerando consistentemente uma
densidade de poténcia superficial entre 300 e 350 W/m?, derretendo eficazmente o gelo e a neve
acumulados. Em outro estudo, (Li et al. 2022) uma mistura de grafite e fibra de carbono foi
incorporada como aditivos condutores, resultando em um concreto asféltico condutivo. Isso
possibilitou o derretimento do gelo e da neve acumulados na superficie de tabuleiros de pontes
metélicas durante o inverno. Em 2022, os estudos de Li (Li et al. 2022) se concentraram em
viabilizar o derretimento ativo de gelo e neve em superficies de concreto asfaltico aplicadas sobre
tabuleiros de pontes metalicas durante o inverno. Ao incorporar grafite e fibra de carbono como
aditivos condutores, foi desenvolvida uma mistura de concreto asféltico condutivo (CGA-10). O
estudo examinou como a variacdo da quantidade desses componentes influencia a resistividade
elétrica da mistura, bem como suas propriedades gerais de pavimentacdo. O desempenho térmico
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foi avaliado por meio de testes de aquecimento, e a eficiéncia de degelo foi analisada em testes em
ambiente controlado. A combinacao de 0,4% de fibra de carbono e 30% de grafite estabeleceu com
sucesso uma robusta rede condutora na matriz asféltica. As fibras de carbono neutralizaram o
impacto negativo do grafite no desempenho mecéanico, reforcando a mistura sem comprometer a
condutividade. Sob condic¢des de teste, a mistura otimizada CGA-10 atingiu uma eficiéncia de
conversdo térmica de 78,85% e derreteu 50,03% do gelo em testes padronizados de degelo. A
equipe da Faneca (Faneca et al. 2020) conduziu um estudo em 2020, tanto em laboratério quanto
em ambientes industriais, para formular um concreto condutor a base de fibras de carbono
recicladas, destinado ao uso em mobiliario urbano em temperaturas abaixo de zero, com resultados
promissores. Recentemente, foi realizada uma reviséo abrangente das pesquisas existentes sobre
concreto cimenticio eletricamente condutor (Anur Oumer et al. 2024)(CCEC), abrangendo
métodos para melhorar a condutividade do concreto, analise do comportamento de transferéncia
de calor e avaliagGes de desempenho por meio de experimentos em laboratdrio e testes de campo
em pequena escala.

Os resultados concordam que os pavimentos ECCC podem melhorar significativamente a gestdo
rodoviaria durante o inverno, aumentando a seguranca e reduzindo os atrasos relacionados com o
clima, além de oferecer uma alternativa ecol6gica aos métodos quimicos e mecanicos de degelo.
Apesar dessas vantagens, a sua implementacdo em larga escala ainda é limitada por desafios
relacionados ao desenvolvimento de préaticas de construgcdo economicamente viaveis, a garantia de
durabilidade a longo prazo e a maximizacédo da eficiéncia energética. Superar esses obstaculos sera
crucial para a adogdo mais ampla da tecnologia ECCC.

4. TECNICAS ELETROQUIMICAS UTILIZANDO PASTAS CIMENTICIAS

CONDUTORAS COMO ANODO.

Quando ocorre corrosdo na armadura de uma estrutura de concreto armado, reparos Sd0 necessarios
para prolongar sua vida util; caso contrario, ha um alto risco de colapso. O método tradicional para
estruturas contaminadas por cloretos é a substituicdo dos elementos estruturais afetados. No
entanto, métodos mais recentes, como protecao catddica, realcalinizacdo eletroquimica e extracéo
eletroquimica de cloretos (EEC), permitem evitar a substituicdo de elementos estruturais. A
vantagem dessas técnicas, conhecidas como Metodos de Manutencdo Eletroquimica, reside
principalmente em sua capacidade de eliminar agentes agressivos, manter o cobrimento de concreto
e possibilitar a passivacdo da armadura.

Esses métodos consistem basicamente na aplicagdo de um campo elétrico entre a haste de ago (polo
negativo ou catodo) e um eletrodo depositado externamente na superficie do concreto (polo
positivo ou anodo), como uma camada de material cimenticio condutor feita com um material
condutor como grafite, por exemplo. Como os cloretos sdo ions com carga negativa, 0 campo
elétrico aplicado faz com que eles migrem da haste para o eletrodo externo através dos poros do
concreto. Posteriormente, mantendo-se uma intensidade menor do campo elétrico, aplica-se
protecdo catddica a armadura (ver Figura).
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A Figura 13 mostra um exemplo de EEC aplicado a amostras do tipo coluna com secdo transversal
circular, exibindo os perfis de CI" antes e depois do EEC, e o perfil de eficiéncia, no qual foram
utilizados um anodo de malha de Ti-RuO2 e uma camada pulverizada de cimento condutor e pasta
de grafite com um sistema de molhagem constante. A eficiéncia média foi de 79,44% (Carmona et
al. 2015).
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Figura 13. Exemplo de teste de extragdo de cloreto em pilares de base cilindrica, indicando a
porcentagem de cloretos em relagcdo a massa de cimento (anodo), bem como a eficiéncia em %
(catodo), em funcdo da profundidade (mm) da amostragem. (a) Anodo de malha de Ti-RuOz; (b)
camada projetada de pasta condutora de cimento e grafite (Adaptado de Carmona et al. 2015).

As primeiras pesquisas conhecidas sobre esse método datam do inicio da década de 1970. Lankard,
Morrison e outros pesquisadores americanos, nos laboratorios (Lankard et al. 1975)da Battelle em
Columbus (Ohio), realizaram os primeiros testes de EEC em corpos de prova cilindricos de
concreto armado com aditivos de cloreto. Enquanto isso, Slater, do Departamento de Transportes
em Topeka (Kansas), realizou as primeiras aplicagbes praticas em tabuleiros de pontes
contaminados com cloretos. Em 1989, foi registrada a primeira patente nos EUA, intitulada
"Removal of Chlorides from Concrete”, ¢ denominado “NORCURE”, sobre um método para
extrair cloretos do concreto armado (Vennesland and Opsahl, 1989). Em 1998, Tritthart publicou,
como mencionado anteriormente, uma revisdo abrangente do método EEC para destacar seus
aspectos cientificos. Apos uma descricdo detalhada do método e do histdrico de sua aplicagéo, ele
se concentra nos movimentos e na distribui¢do i0nica causados pelo tratamento, medidos por
mudangas na concentracdo dentro da rede de poros. Isso € seguido por um estudo completo dos
efeitos colaterais indesejaveis do método, como possiveis reacfes alcali-agregado, diminuicao da
aderéncia entre aco e concreto e perda de resisténcia a tracdo no aco devido ao hidrogénio
produzido (Tritthart, 1998). O grupo de Bertolini, Yu e Page dedicou sua pesquisa, na aplicacdo
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dessas técnicas, aos efeitos do tratamento nas propriedades mecanicas, aplicando densidades de
corrente que variam de 5 mA/m2, usadas na protecdo catddica, até os 5 A/m2 do EEC (Bertolini,
Yu and Page, 1996). Em todos esses estudos, o anodo externo é composto de malha de titanio
embutida em camadas de fibra de celulose revestidas com um geotéxtil e imersos em uma solu¢édo
saturada de Ca(OH)2. Andrade, Castellote e outros realizaram o primeiro estudo sobre a
modelagem matematica da EEC. A partir da equacdo de Nernst-Planck para o fluxo idnico,
desenvolveram férmulas, por meio de suas pesquisas, para calcular o nimero de transporte de
cloreto e o coeficiente de migracdo, a fim de modelar a eficiéncia do tratamento (Andrade et al.
1995). A equipe formada por Fajardo e Escadeillas, entre outros, estudou a microestrutura da
interface aco-concreto apds a EEC utilizando espectroscopia de raios X e microscopia eletrénica
de varredura (Fajardo, Escadeillas and Arliguie, 2006). A equipe formada por Climent, Garcés e
outros publicou um trabalho inovador em 2005 sobre a influéncia da disposicdo das barras de
reforco na eficiéncia da EEC (Garcés et al. 2005). Posteriormente, em 2006, essa mesma equipe
publicou outro trabalho com estrutura semelhante ao anterior, mas com objetivos diferentes. Nesse
caso, 0 objetivo era determinar a influéncia na eficiéncia do método de amostragem pontual, da
densidade de corrente e da introducdo de interrupg6es no tratamento (Climent et al. 2006).

E importante esclarecer que a protecdo catodica é aplicada a estruturas ja contaminadas por
cloretos para controlar seu grau de corrosdo, enquanto a prevencao catodica é utilizada para tratar
novas estruturas suscetiveis a contaminacdo por cloretos, com o objetivo de aumentar sua
resisténcia a corrosdo e, consequentemente, sua vida Util, por meio de densidades de corrente muito
menores. Lazzari e Pedeferri, em um artigo seminal, estabelecem as consequéncias negativas
dessas técnicas e como controla-las; as condi¢des de operacao de potencial e corrente, os problemas
relacionados a capacidade de extracao e a possibilidade de se obter a prote¢do desejada sem 0 risco
de fragilizacdo por hidrogénio em estruturas de concreto protendido. Este trabalho também inclui
exemplos de projeto, implementacdo, aplicacdo e monitoramento tanto da protecdo catddica quanto
da prevencao (Lazzari and Pedeferri 2006).

Além disso, foi no final da década de 1990 que se estabeleceu a possibilidade de usar um material
cimenticio condutor como anodo em técnicas de protecdo catodica. Dois estudos se destacam nesse
sentido. O primeiro, conduzido por Fu e Chung em 1995 (Fu and Chung, 1995), foi um estudo
interessante sobre o uso de argamassas reforcadas com fibra de carbono como material de contato
para protecdo catodica. Eles descobriram que uma pequena adic¢do de fibras de carbono a nova
argamassa aplicada a superficie da argamassa antiga a ser tratada com protecédo catddica, servindo
como anodo no tratamento, reduz tanto a resistividade de contato quanto a resistividade
volumétrica da nova argamassa. O segundo estudo, de Bertolini e colaboradores em 2003,
investigou a eficiéncia de anodos formados por argamassas cimenticias condutoras na protecdo
catddica de aco de reforco em concreto. Eles estudaram o comportamento dessas camadas atuando
como anodos no processo de protecdo catddica. Trata-se de argamassas de cimento com adigdo de
fibras de carbono revestidas com niquel (Bertolini et al. 2004). Perez et al. sdo os autores da
primeira aplicacdo de &nodos cimenticios condutores na aplicacdo da técnica de extracdo
eletroquimica de cloreto (Pérez et al. 2010).

5. OUTRAS APLICACOES.

Existem muitas outras aplica¢des além das mencionadas. Por exemplo, o aterramento é necessario
em edificios e outras estruturas onde equipamentos elétricos estdo em operacdo. A protecdo contra
raios é necessaria em edificios altos. Alguns metais, como o aco, sdo comumente usados para essas
aplicacdes. No entanto, o uso de concreto eletricamente condutor para reduzir o volume de metal
necessario € interessante do ponto de vista da reducdo de custos, maior durabilidade e instalacéo
simplificada. (Chung, 2003) Recentemente, o Dr. Chung publicou estudos sobre as propriedades
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capacitivas e piezopermissivas do concreto para autodeteccédo de tensdes (Chung and Ozturk, 2024;
Ozturk and Chung, 2024). Numerosos outros esforcos estdo sendo dedicados aos aspectos
energéticos do concreto multifuncional (Abden et al. 2024).

Por fim, os esforcos iniciais para imprimir em 3D concretos condutores capazes de detectar sua
prépria deformacdo sdo dignos de nota, pois demonstram um potencial promissor para a criagdo de
estruturas em que areas localmente criticas podem ser transformadas em nos sensores. Esses nos
poderiam desempenhar um papel fundamental no monitoramento tanto do processo de impressao
quanto da funcionalidade e seguranca da estrutura ao longo de sua vida atil (Liu et al. 2024; Sousa
et al. 2024).

6. CONCLUSOES E PERSPECTIVAS.

O desenvolvimento de concretos condutivos com funcionalidades avancadas representa um campo
emergente e promissor na engenharia de materiais para infraestrutura. Esses materiais ndo apenas
cumprem fungdes estruturais tradicionais, mas também incorporam capacidades inteligentes que
Ihes permitem responder ativamente a estimulos ambientais. Entre as aplicagbes mais notaveis
estéo:

a) Monitoramento estrutural por meio de piezoresistividade, medicdo de deformacdes e
deteccdo de danos, além de integracdo com sistemas de energia e sensores.

b) A funcéo de aquecimento e descongelamento utiliza o efeito Joule. Pavimentos de concreto
condutivo com funcdes de aquecimento e descongelamento representam uma alternativa
promissora para infraestruturas inteligentes em climas frios. No entanto, é essencial dar
continuidade a pesquisa aplicada e experimental em larga escala para otimizar seu
desempenho, garantir sua viabilidade econdmica e avaliar seu impacto ambiental a longo
prazo.

c) O papel do anodo na aplicacdo de técnicas eletroquimicas. A pasta de cimento condutora
se apresenta como uma solugdo promissora para a implementacdo de técnicas
eletroquimicas mais eficientes e duraveis, alem de promover a integracao funcional entre
0s componentes do sistema e o substrato estrutural.

Apesar dos avangos significativos na formulagdo e caracterizagdo desses materiais, sua
implementacdo em larga escala ainda enfrenta diversos desafios técnicos e econdmicos. Entre eles,
destacam-se a dificuldade de dispersdo homogénea dos materiais condutores na matriz cimenticia,
0s custos elevados associados aos aditivos funcionais, o uso de eletrodos de contato e fiagéo, e a
necessidade de garantir a durabilidade e a estabilidade das propriedades elétricas em condicdes
reais de uso.

No entanto, as pesquisas atuais continuam a explorar novas combinagdes de materiais condutores
(como nanotubos de carbono, grafeno, fibras metalicas e materiais reciclados), bem como técnicas
de fabricacdo inovadoras, incluindo a impresséo 3D, para melhorar a eficiéncia e reduzir o impacto
ambiental. Nesse contexto, o concreto condutor emerge como um componente fundamental para o
desenvolvimento de infraestruturas inteligentes, resilientes e sustentaveis no futuro.
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