Rules-based embedded system applied to the determination of structural health in multilevel buildings

  • Félix Ramírez-Cervantes CU-UAEM Texcoco, Universidad Autónoma del Estado de México, Texcoco, Estado de México https://orcid.org/0000-0002-4457-1599
  • Farid García-Lamont CU-UAEM Texcoco, Universidad Autónoma del Estado de México, Texcoco, Estado de México
  • David G. Maxinez FES Aragón, Universidad Nacional Autónoma de México, Nezahualcóyotl, Estado de México
  • Joel Ayala CU-UAEM Texcoco, Universidad Autónoma del Estado de México, Texcoco, Estado de México
  • Rodolfo García CU-UAEM Ecatepec, Universidad Autónoma del Estado de México, Ecatepec, Estado de México
Keywords: structural health monitoring, relative displacement, programmable logic, rules-based system

Abstract

The objective of the work was to develop a rules-based system that supports determining the structural health of multi-level buildings. Hardware description techniques using programmable logic using entity integration and hierarchical design with VHDL programming are used. The system is embedded in an FPGA which, using an algorithm, integrates a first stage where a group of ultrasound sensors collect a measure that is interpreted to obtain the relative displacement of the mezzanine. In the second stage an inference engine performs the evaluation. We present results using an experimental model where it was verified that the system was able to determine the stability of the structure based on the parameter relative displacement of mezzanine.

Downloads

Download data is not yet available.

References

Arias, D., De la Colina, J. (2018), Assessment of methodologies to estimate displacements from measured acceleration records. Measurement. 114:261-273. https://doi.org/10.1016/j.measurement.2017.09.019 DOI: https://doi.org/10.1016/j.measurement.2017.09.019

Bao, X., Chen, L. (2012), Recent progress in distributed fiber optic sensors. Sensors. 12(7):8601-8639. https://doi.org/10.3390/s120708601 DOI: https://doi.org/10.3390/s120708601

Breuer, P., Chmielewski, T., Górski, P., Konopka, E. (2002), Application of GPS technology to measurements of displacements of high-rise structures due to weak winds. Journal of Wind Engineering and Industrial Aerodynamics. 90(3):223-230. https://doi.org/10.1016/S0167-6105(01)00221-5 DOI: https://doi.org/10.1016/S0167-6105(01)00221-5

Chatterjee, S., Sarbartha, S., Sirshendu, H., Nilanjan, D., Amira, S., Valentina, E. (2017), Particle swarm optimization trained neural network for structural failure prediction of multistoried RC buildings. Neural Computing and Applications. 28:2005–2016. https://doi.org/10.1007/s00521-016-2190-2 DOI: https://doi.org/10.1007/s00521-016-2190-2

Ghasemi, M. R., Nobahari, M., Shabakhty, N. (2018), Enhanced optimization-based structural damage detection method using modal strain energy and modal frequencies. Engineering with Computers. 34:637–647. https://doi.org/10.1007/s00366-017-0563-5 DOI: https://doi.org/10.1007/s00366-017-0563-5

Guo, J., Xie, X., Bie, R., Sun, L. (2014), Structural health monitoring by using a sparse coding-based deep learning algorithm with wireless sensor networks. Personal and Ubiquitous Computing. 18:1977–1987. https://doi.org/10.1007/s00779-014-0800-5 DOI: https://doi.org/10.1007/s00779-014-0800-5

Li, J., Hao, H. (2016), Health monitoring of joint conditions in steel truss bridges with relative displacement sensors. Measurement. 88:360-371. https://doi.org/10.1016/j.measurement.2015.12.009 DOI: https://doi.org/10.1016/j.measurement.2015.12.009

Li, X. Q., Chen, Q. J., Ding, Z. D. (2019), Structural damage diagnosis and fine scale finite element intelligence simulation of long span cable stayed bridges. Cluster Computing. 22: 4101–4107. https://doi.org/10.1007/s10586-017-1515-y DOI: https://doi.org/10.1007/s10586-017-1515-y

Maxinez, D., Alcalá, J. (2007), VHDL El arte de programar sistemas digitales. México, CECSA, 5th. ed., cap 1, pp. 1-31.

Moosazade, S., Namazi, E., Aghababael, H., Marto, A., Mohamad, H., Hajihassani, M. (2019), Prediction of building damage induced by tunnelling through an optimized artificial neural network. Engineering with Computers. 35(2):579–591. https://doi.org/10.1007/s00366-018-0615-5 DOI: https://doi.org/10.1007/s00366-018-0615-5

Park, H. S., Kim, J. M., Choi, S. W., Kim, Y. (2013), A Wireless Laser Displacement Sensor Node for Structural Health Monitoring. Sensors. 13(10):13204-13216. https://doi.org/10.3390/s131013204 DOI: https://doi.org/10.3390/s131013204

Paulay, T., (2001) Some design principles relevant to torsional phenomena in ductile buildings. Journal of Earthquake Engineering. 5(3):273-308. https://doi.org/10.1080/13632460109350395 DOI: https://doi.org/10.1080/13632460109350395

Song, H. X., Wang, X. D., Ma, L. Q., Cai, M. Z., Cao, T. Z. (2006), Design and performance analysis of laser displacement sensor based on Position Sensitive Detector (PSD). Journal of Physics: Conference Series. 48:217-222. http://dx.doi.org/10.1088/1742-6596/48/1/040 DOI: https://doi.org/10.1088/1742-6596/48/1/040

Tamura, Y., Matsui, M., Pagnini, L. C., Ishibashi, R., Yoshida, A. (2002), Measurement of wind-induced response of buildings using RTK-GPS. Journal of Wind Engineering and Industrial Aerodynamics. 90:1783-1793. https://doi.org/10.1016/S0167-6105(02)00287-8 DOI: https://doi.org/10.1016/S0167-6105(02)00287-8

Zrelli, A., Ezzedine, T. (2017), Collect Tree Protocol for SHM system using wireless sensor networks. 13th International Wireless Communications and Mobile Computing Conference (IWCMC):1797-1801. https://doi.org/10.1109/IWCMC.2017.7986556 DOI: https://doi.org/10.1109/IWCMC.2017.7986556

Published
2022-12-28
How to Cite
Ramírez-CervantesF., García-LamontF., G. Maxinez, D., Ayala, J., & GarcíaR. (2022). Rules-based embedded system applied to the determination of structural health in multilevel buildings. Revista ALCONPAT, 13(1), 28 - 44. https://doi.org/10.21041/ra.v13i1.611