Influence of experimental variables on the mechanical properties of steel fiber reinforced concrete (SFRC) in chloride degradation experiments: bibliographic review and statistical analysis

  • Oslery Becerra Tecnológico Nacional de México/IT de Aguascalientes, Aguascalientes https://orcid.org/0009-0003-8554-1438
  • Alejandro Meza Tecnológico Nacional de México/IT de Aguascalientes, Aguascalientes
  • Rogelio Salinas Universidad Autónoma de Aguascalientes, Aguascalientes
Keywords: steel fiber reinforced concrete, degradation, chlorides, experimental variables, mechanical properties

Abstract

The objective of this research is to evaluate the effect of experimental variables in the study of chloride degradation of steel fiber reinforced concrete (SFRCs). The information was collected from different literary sources to later be treated through Taguchi's experimental design and regression analysis. The results show that the most influential factors in the degradation of SFRCs degraded by chloride are the load during degradation and the crack width, factors that statistically impact on residual resistance and maximum flexural load. However, others such as the water/cement ratio, fiber volume, chloride concentration and degradation time showed little influence on the mechanical response of the SFRCs.

Downloads

Download data is not yet available.

References

Abbas, S., Soliman, A. M., Nehdi, M. L. (2014), Mechanical Performance of reinforced Concrete and Steel Fiber-Reinforced Concrete Precast Tunnel Lining Segments: A Case Study, Aci Materials Journal, 501-510.

Antony, F., Perry, D., Wang, C., Kumar, M. (2006), An application of Taguchi method of experimental design for new product design and development process, Operations and Quality Management Unit, Caledonian Business School, Glasgow Caledonian University, Glasgow, UK, http://dx.doi.org/10.1108/01445150610645611.

Balouch, S. U., Forth, J. P., Granju, J. L. (2010), Surface corrosion of steel fibre reinforced concrete, Cement and Concrete Research, 40, 410–414, http://dx.doi.org/10.1016/j.cemconres.2009.10.001.

Behbahani, H., Nematollahi, B. (2011), Steel Fiber Reinforced Concrete: A Review, ICSECM, Kandy-SriLanka.

Bernard, E. S. (2019), Durability of fibre-reinforced shotcrete, TSE P/L, Penrith, Australia, http://dx.doi.org/10.1201/9780203023389.ch6.

Berrocal, C. G., Fernandez, I., Lundgren, K., Löfgren, I. (2017), Corrosion-induced cracking and bond behaviour of corroded reinforcement bars in SFRC, Composites Part B, http://dx.doi.org/10.1016/j.compositesb.2017.01.020.

Berrocal, C. G., Lundgren, K., Löfgren, I. (2015), Corrosion of Steel bars embedded in fibre reinforced concrete under chloride attack: State of the art, Cement and Concrete Research, http://dx.doi.org/10.1016/j.cemconres.2015.10.006.

Berrocal, C. G., Lundgren, K., Löfgren, I. (2013), Influence of steel fibres on corrosion of reinforcement in concrete in chloride environments: a review, Fibre concrete, Prague, Czech Republic.

Blagojevic, A. (2016), The Influence of Cracks on the Durability and Service Life of Reinforced Concrete Structures in relation to Chloride-Induced Corrosion: A Look from a Different Perspective, Doctoral Thesis, Delft Univeristy of Technology: Delft, The Netherlands.

Bui, L. V. H, Jongvivatsakul, P., Limpaninlachat, P., Stitmannaithum, B., Nguyen, T. T., Nguyen, T. P. (2021), Simulation of shear behavior of corroded reinforced concrete beams flexurally repaired with steel fiber-reinforced concrete, Structures, 34, 1545–1559. http://dx.doi.org/10.1016/j.istruc.2021.08.087.

Carrillo, J., Cárdenas, Pulido, J., Aperador, W. (2017), Propiedades mecánicas a flexión del concreto reforzado con fibras de acero bajo ambientes corrosivos, Revista Ingeniería de Construcción, 32, 59-72.

Chen, H., Zhou, X., Li, Q., He, R., Huang, X. (2021), Dynamic Compressive Strength Tests of Corroded SFRC Exposed to Drying–Wetting Cycles with a 37 mm Diameter SHPB, Materials, 14, 2267, http://dx.doi.org/10.3390/ma14092267.

Doo-Yeol, Y., Shin, W., Chun, B., Banthia, N. (2021), Assessment of steel fiber corrosion in self-healed ultra-high-performance fiber-reinforced concrete and its effect on tensile performance, Cement and Concrete Research, 133, 106091, http://dx.doi.org/10.1016/j.cemconres.2020.106091.

Ferreira, M. P., Oliveira, M. H., Lima, Neto A. F., Tapajós, L. S., Nascimento, A. J. C, Freire, M. C. (2018), Influencia del anclaje en la resistencia a la flexión de vigas reforzadas con mantas de PRFC, Revista ALCONPAT, 9 (1), 30 – 47, http://dx.doi.org/10.21041/ra.v9i1.269.

Granju, J. L., Balouch, S. U. (2005), Corrosion of steel fibre reinforced concrete from the cracks, Cement and Concrete Research, 572– 577, http://dx.doi.org/10.1016/j.cemconres.2004.06.032.

Horszczaruk, E. K. (2009), Hydro-abrasive erosion of high performance fiber-reinforced concrete, Wear, 267, 110–115, http://dx.doi.org/10.1016/j.wear.2008.11.010.

Hou, L., Peng, Y., Xu, R., Zhang, X., Huang, T., Chen, D. (2021), Corrosion behavior and flexural performance of reinforced SFRC beams under sustained loading and chloride attack, 242, 112553. http://dx.doi.org/10.1016/j.engstruct.2021.112553.

Juárez-Alvarado, C. A., González López, J. R., Mendoza-Rangel, J. M., Zaldivar Cadena, A. A. (2017), Compuestos cementantes fibroreforzados de bajo impacto ambiental comportamiento mecánico, Revista ALCONPAT, 7 (2), 135-147, http://dx.doi.org/10.21041/ra.v7i2.189.

Kaur, G., Pal Singh, S. (2012), Flexural performance of fibrous concrete with cement additions, Construction Materials, 167, 14-25, http://dx.doi.org/10.1680/coma.12.00008.

Kuehl, R. O. (2000), Diseño de experimentos. Principios estadísticos de diseño y análisis de investigación, Arizona.

Li, H., Li B., Jin, R., Li, S., Yu, J. G. (2018), Effects of sustained loading and corrosion on the performance of reinforced concrete beams, Construction and Building Materials, 169, 179–187.

Marcos-Meson, V., Fischer, G., Edvardsen, C., Skovhus, T. L., Michel, A. (2019), Durability of Steel Fibre Reinforced Concrete (SFRC) exposed to acid attack – A literature review, Construction and Building Materials, 200, 490–501, https://doi.org/10.1016/j.conbuildmat.2018.12.051.

Marcos-Meson, V., Fischer, G., Solgaard, A., Edvardsen, C., Michel, A. (2021), Mechanical Performance of Steel Fibre Reinforced Concrete Exposed to Wet–Dry Cycles of Chlorides and Carbon Dioxide, Materials, 14, 2642, http://dx.doi.org/10.3390/ma14102642.

Marcos-Meson, V., Geiker, M., Fischer, G., Solgaard, A., Jakobsen, U. H., Edvardsen, C., Skovhus, T. L., Michel, A., Danner, T. (2020), Durability of cracked SFRC exposed to wet-dry cycles of chlorides and carbon dioxide – Multiscale deterioration phenomena, Cement and Concrete Research, 135, 106120, https://doi.org/10.1016/j.cemconres.2020.106120.

Meza, A., Shaikh, F. U. A. (2020), Anisotropy and bond behaviour of recycled Polyethylene terephthalate (PET) fibre as concrete reinforcement, Constr. Build. Mater, 265, 120331, http://dx.doi.org/10.1016/j.conbuildmat.2020.120331.

Meza, A., Pujadas, P., Meza, L. M., Pardo-Bosch, F., López-Carreño, R. D. (2021), Mechanical Optimization of Concrete with Recycled PET Fibres Based on a Statistical-Experimental Study, Materials, 14-240, http://dx.doi.org/10.3390/ma14020240.

Meza, A., Siddique, S. (2019), Effect of aspect ratio and dosage on the flexural response of FRC with recycled fiber, Construction and Building Materials, 213, 286–291, http://dx.doi.org/10.1016/j.conbuildmat.2019.04.081.

Michel, A., Solgaard, A. O. S., Pease, B. J., Geiker, M. R., Stang, H., Olesen, J. F. (2013), Experimental investigation of the relation between damage at the concrete-steel interface and initiation of reinforcement corrosion in plain and fibre reinforced concrete, Corrosion Science, 77, 308–321, http://dx.doi.org/10.1016/j.corsci.2013.08.019.

Nguyen, W., Duncan, J. F., Jen, G., Ostertag, C. P. (2018), Influence of matrix cracking and hybrid fiber reinforcement on the corrosion initiation and propagation behaviors of reinforced concrete, Corrosion Science, http://dx.doi.org/10.1016/j.corsci.2018.06.004.

Paul, S. C., Van Zijl, G. P., Branko Šavija, B. (2020), Efect of Fibers on Durability of Concrete: A Practical Review, Materials, 13, 4562, http://dx.doi.org/10.3390/ma13204562www.

Salazar-Jiménez, J. A. (2015), Introducción al fenómeno de corrosión: tipos, factores que influyen y control para la protección de materiales (Nota técnica), Tecnología en Marcha, 28, 127-136.

Simões, Y. S., Santo, C. F. R. (2019), Contribución de las vigas de concreto armado degradadas por la acción del fuego: Análisis comparativo entre el refuerzo estructural con fibras de carbono y láminas metálicas, Revista ALCONPAT, 9 (1), 48 – 64, http://dx.doi.org/10.21041/ra.v9i1.259.

Tang, K., Wilkinson, S. (2020), Corrosion resistance of electrified railway tunnels made of steel fiber reinforced concrete, Construction and Building Materials, 230, 117006, http://dx.doi.org/10.1016/j.conbuildmat.2019.117006.

Taqi, F. Y., Mashrei, M. A., Oleiwi, H. M. (2021), Experimental study on the effect of corrosion on shear strength of fibre-reinforced concrete beams, Structures, 33, 2317-2333, http://dx.doi.org/10.1016/j.istruc.2021.06.006.

Zhang, P., Kang, L., Wang, J., Guo, J., Hu, S., Ling, Y. (2020), Mechanical Properties and Explosive Spalling Behavior of Steel-Fiber-Reinforced Concrete Exposed to High Temperature-A Review, Applied Sciences, 10, 2324, http://dx.doi.org/10.3390/app10072324.

Published
2023-04-25
How to Cite
Becerra, O., Meza, A., & Salinas, R. (2023). Influence of experimental variables on the mechanical properties of steel fiber reinforced concrete (SFRC) in chloride degradation experiments: bibliographic review and statistical analysis. Revista ALCONPAT, 13(2), 143 - 157. https://doi.org/10.21041/ra.v13i2.641