Defect detection using YOLOv8 for determining the condition of asphalt pavements

  • Átila Marconcine de Souza UEL
  • Carlos Eduardo de Oliveira Universidade Estadual de Londrina
  • Pedro Henrique Bruder Decker Universidade Estadual de Londrina
  • Ana Lídia da Silva Cascales Corrêa Universidade Estadual de Londrina
  • Giorgie Eduardo Rodrigues Amorim Universidade Estadual de Londrina
  • Heliana Barbosa Fontenele Universidade Estadual de Londrina
Keywords: automation, algorithm, image, computer vision, object detection

Abstract

This study aimed to evaluate the capacity of the YOLOv8 algorithm to detect potholes, patches, and cracks. To achieve this, a section of a highway was recorded, manually evaluated in the field, and compared with a semi-automatic evaluation based on video processing by the model. The model yielded different results from those obtained through field assessment. Although only a portion of the Maintenance Condition Index is used in the assessment, this marks the first use of an index integrated with YOLOv8. Thus, it is concluded that the model requires further improvements to become viable for definitive application.

Downloads

Download data is not yet available.

References

Chunlong, Z., Peile, H., Shenghuai, W., Chen, W., & Hongxia, W. (2024). Pavement Defect Detection Algorithm Based on Improved YOLOv7 Complex Background. IEEE Access, 12, 32870–32880. https://doi.org/10.1109/ACCESS.2024.3370604

Confederação Nacional dos Transportes (CNT). (2023). Pesquisa CNT de Rodovias 2023. Disponível em: https://agenciadenoticias.ms.gov.br/wp-content/uploads/2024/01/pesquisa_cnt_rodovias_2024_relatorio_gerencial.pdf. Acesso em: 06 maio 2024.

Departamento Nacional de Infraestrutura de Transportes. (2024). Condições do Pavimento em março/2024. Disponível em: https://servicos.dnit.gov.br/dadosabertos/dataset/condicoes-do-pavimento/resource/030e374d-a505-4d16-a283-610a29008746. Acesso em: 06 maio 2024.

Departamento Nacional de Infraestrutura de Transportes. (2024). Resolução nº 5/2022, de 27 de abril de 2022. Disponível em: https://www.gov.br/dnit/pt-br/central-de-conteudos/atos-normativos/tipo/resolucoes/resolucao-5-2022-dir-ba-080-de-29-04-2022.pdf. Acesso em: 08 abr. 2024.

Du, F. J., & Jiao, S. J. (2022). Improvement of Lightweight Convolutional Neural Network Model Based on YOLO Algorithm and Its Research in Pavement Defect Detection. Sensors, 22(9). https://doi.org/10.3390/s22093537

Ju, R. Y., & Cai, W. (2023). Fracture detection in pediatric wrist trauma X-ray images using YOLOv8 algorithm. Scientific Reports, 13(1). https://doi.org/10.1038/s41598-023-47460-7

El Hakea, A. H., & Fakhr, M. W. (2023). Recent computer vision applications for pavement distress and condition assessment. In Automation in Construction (Vol. 146). Elsevier B.V. https://doi.org/10.1016/j.autcon.2022.104664

Gong, H., Tesic, J., Tao, J., Luo, X., & Wang, F. (2023). Automated Pavement Crack Detection with Deep Learning Methods: What Are the Main Factors and How to Improve the Performance? In Transportation Research Record (Vol. 2677, Issue 10, pp. 311–323). SAGE Publications Ltd. https://doi.org/10.1177/03611981231161358

Gonçalves, M., Marques, T., Gaspar, P. D., Soares, V. N. G. J., & Caldeira, J. M. L. P. (2023). Road Pavement Damage Detection using Computer Vision Techniques: Approaches, Challenges and Opportunities. Revista de Informatica Teorica e Aplicada, 30(2), 22–35. https://doi.org/10.22456/2175-2745.129787

Huang, P., Wang, S., Chen, J., Li, W., & Peng, X. (2023). Lightweight Model for Pavement Defect Detection Based on Improved YOLOv7. Sensors, 23(16). https://doi.org/10.3390/s23167112

Hussain, M. (2023). YOLO-v1 to YOLO-v8, the Rise of YOLO and Its Complementary Nature toward Digital Manufacturing and Industrial Defect Detection. In Machines (Vol. 11, Issue 7). Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/machines11070677

Lin, Y. C., Chen, W. H., & Kuo, C. H. (2021). Implementation of pavement defect detection system on edge computing platform. Applied Sciences (Switzerland), 11(8). https://doi.org/10.3390/app11083725

Lu, J., Behbood, V., Hao, P., Zuo, H., Xue, S., & Zhang, G. (2015). Transfer learning using computational intelligence: A survey. Knowledge-Based Systems, 80, 14–23. https://doi.org/10.1016/j.knosys.2015.01.010

Ma, D., Fang, H., Wang, N., Zhang, C., Dong, J., & Hu, H. (2022). Automatic Detection and Counting System for Pavement Cracks Based on PCGAN and YOLO-MF. IEEE Transactions on Intelligent Transportation Systems, 23(11), 22166–22178. https://doi.org/10.1109/TITS.2022.3161960

Pan, Y., & Zhang, L. (2021). Roles of artificial intelligence in construction engineering and management: A critical review and future trends. In Automation in Construction (Vol. 122). Elsevier B.V. https://doi.org/10.1016/j.autcon.2020.103517

Souza, A. M.; Soares, J. V. S.; Sousa, A. D. P.; Sousa, G. C. L.; Silva, L. M. (2023). Utilização da arquitetura de detecção de objetos YOLOv4 na identificação de panelas em pavimentos asfálticos. In: Anais do I Congresso de Engenharia Civil do Centro de Ciências de Balsas – I CONGEC – CCBL. Balsas: MA (Brazil), pp. 9-29. Disponível em: https://www.edufma.ufma.br/index.php/produto/anais-do-i-congresso-de-engenharia-civil-do-centro-de-ciencias-de-balsas-congec-ccbl/. Acesso em: 25 abr. 2024.

Terven, J., Córdova-Esparza, D. M., & Romero-González, J. A. (2023). A Comprehensive Review of YOLO Architectures in Computer Vision: From YOLOv1 to YOLOv8 and YOLO-NAS. In Machine Learning and Knowledge Extraction (Vol. 5, Issue 4, pp. 1680–1716). Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/make5040083

Wang, A., Chen, H., Liu, L., Chen, K., Lin, Z., Han, J., & Ding, G. (2024). YOLOv10: Real-Time End-to-End Object Detection. http://arxiv.org/abs/2405.14458

Wang, C.-Y., Yeh, I.-H., & Liao, H.-Y. M. (2024). YOLOv9: Learning What You Want to Learn Using Programmable Gradient Information. http://arxiv.org/abs/2402.13616

Yao, H., Fan, Y., Wei, X., Liu, Y., Cao, D., & You, Z. (2024). Research and optimization of YOLO-based method for automatic pavement defect detection. Electronic Research Archive, 32(3), 1708–1730. https://doi.org/10.3934/ERA.2024078

Zhao, Z. Q., Zheng, P., Xu, S. T., & Wu, X. (2019). Object Detection with Deep Learning: A Review. In IEEE Transactions on Neural Networks and Learning Systems (Vol. 30, Issue 11, pp. 3212–3232). Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/TNNLS.2018.2876865

Published
2025-01-01
How to Cite
Marconcine de Souza, Átila, Eduardo de Oliveira, C., Henrique Bruder Decker, P., da Silva Cascales Corrêa, A. L., Eduardo Rodrigues Amorim, G., & Barbosa Fontenele, H. (2025). Defect detection using YOLOv8 for determining the condition of asphalt pavements. Revista ALCONPAT, 15(1), 79 - 91. https://doi.org/10.21041/ra.v15i1.781