Impact of PET and microfiber fibers on the mechanical properties of pervious concrete: a canonical correlation approach.

Authors

  • M. G. Gomez-Valdovinos Facultad de Ingeniería Civil, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, México
  • W. Martinez-Molina Facultad de Ingeniería Civil, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, México
  • A. Muciño-Velez Materiales y Sistemas Estructurales (Lmse), Facultad de Arquitectura, Universidad Nacional Autónoma de México, México.
  • M. Arreola-Sanchez Facultad de Ingeniería Civil, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, México
  • H. L. Chavez-Garcia Facultad de Ingeniería Civil, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, México
  • M. A. Navarrete-Seras Facultad de Ingeniería Civil, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, México
  • J. P. Molina-Aguilar Facultad de Ingeniería Civil, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, México
  • Elia Mercedes Alonso Guzman Facultad de Ingeniería Civil, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, México https://orcid.org/0000-0002-8502-4313

DOI:

https://doi.org/10.21041/ra.v16i1.822

Keywords:

multivariate analysis, structural behavior, resonance frequency, experimental characterization, dynamic modulus of elasticity

Abstract

The objective was to analyze the effect of polypropylene microfibers and PET fibers on the mechanical properties and electrical resistivity (ER) of pervious concrete. Three mixtures were designed—control, with microfibers, and with PET—and tested in compression, tension, flexure, ER, and resonance frequency. The results were integrated through a Canonical Correlation Analysis (CCA) to identify multivariate relationships between fiber reinforcement and material performance. CCA revealed significant correlations between fiber incorporation and increases in mechanical strength, as well as their relationship with variations in ER. This study is original in applying CCA to pervious concrete: fibers improve structural behavior, and CCA provides a precise and comprehensive multivariable interpretation.

Downloads

Download data is not yet available.

References

ACI. 2002. “ACI 211.3, Standard Practice for Selecting Proportions for No-Slump Concrete.”

ACI. 2010. “ACI 522R. Report on Pervious Concrete.”

ASTM International. 2012. “ASM C 150, Standard Specification for Portland Cement.”

B.C. Matías Castillo, M. de L. Sandoval Solís, G. Linares Fleites, H. J. Reyes Cervantes. 2017. “Análisis de Correlación Canónica Usando Algorítmos Genéticos.” Revists Investigación Operacional 38 (1): 1–13.

Badii, M. H., and J. Castillo. 2017. “Análisis de Correlación Canónica (ACC) e Investigación Científica.” Revista Innovaciones de Negocios 4 (8): 405–22. https://doi.org/10.29105/rinn4.8-9 DOI: https://doi.org/10.29105/rinn4.8-9

Blancas-Herrera, Victor Hugo, Wilfrido Martínez-Molina, Hugo Luis Chavez-Garcia, Jorge Alberto Pacheco-Segovia, Sandra del Carmen Argüello-Hernández, Noel Díaz-González, Hypatia Mariana Cruz-Reyes, Elia Mercedes Alonso-Guzmán, and Rosalia Ruiz Ruiz. 2020. “Evaluation of the Mechanical Strength of a Concrete Modified with PET Fibers from Post-Consumer Bottles.” Key Engineering Materials 862 (September): 66–71. https://doi.org/10.4028/www.scientific.net/KEM.862.66 DOI: https://doi.org/10.4028/www.scientific.net/KEM.862.66

Chandrappa, Anush K., and Krishna Prapoorna Biligiri. 2016. “Pervious Concrete as a Sustainable Pavement Material – Research Findings and Future Prospects: A State-of-the-Art Review.” Construction and Building Materials 111 (May): 262–74. https://doi.org/10.1016/J.CONBUILDMAT.2016.02.054. DOI: https://doi.org/10.1016/j.conbuildmat.2016.02.054

D. Díaz, N. Villegas. 2015. “Correlación Canónica Entre Índices Macroclimáticos y Variables Meteorológicas de Superficie En Colombia.” Revista U.D.C.A Actualidad & Divulgación Científica 18 (2): 543–52. https://doi.org/https://doi.org/10.31910/rudca.v18.n2.2015.185. DOI: https://doi.org/10.31910/rudca.v18.n2.2015.185

Giustozzi, F. 2016. “Polymer-Modified Pervious Concrete for Durable and Sustainable Transportation Infrastructures.” Construction and Building Materials 111 (May): 502–12. https://doi.org/10.1016/J.CONBUILDMAT.2016.02.136. DOI: https://doi.org/10.1016/j.conbuildmat.2016.02.136

Gómez Valdovinos, María Guadalupe, Wilfrido Martínez Molina, Alberto Muciño Vélez, Elia Mercedes Alonso Guzmán, Hugo Luis Chávez García, Adriá Sánchez Calvillo, Mauricio Arreola Sánchez, et al. 2025. “Modificación de Propiedades Mecánicas Del Concreto Permeable Adicionado Con Residuos de PET y Macrofibras Sintéticas.” Ingeniería Investigación y Tecnología 26 (1): 1–11. https://doi.org/10.22201/fi.25940732e.2025.26.1.002. DOI: https://doi.org/10.22201/fi.25940732e.2025.26.1.002

Hesami, Saeid, Saeed Ahmadi, and Mahdi Nematzadeh. 2014. “Effects of Rice Husk Ash and Fiber on Mechanical Properties of Pervious Concrete Pavement.” Construction and Building Materials 53 (February): 680–91. https://doi.org/10.1016/J.CONBUILDMAT.2013.11.070. DOI: https://doi.org/10.1016/j.conbuildmat.2013.11.070

Hotelling, Harold. 1936. “Relations Between Two Sets of Variates.” Biometrika 28: 321–77. DOI: https://doi.org/10.1093/biomet/28.3-4.321

J T Kevern, D. Biddle. 2017. “Effects of Macrosynthetic Fibers on Pervious Concrete Properties.” Journal of Materials in Civil Engineering 27 (9). https://doi.org/https://doi.org/10.1061/(ASCE)MT.1943-5533.00012. DOI: https://doi.org/10.1061/(ASCE)MT.1943-5533.0001213

Juradin, S., I. Netinger-Grubeša, S. Mrakovčić, and D. Jozić. 2021. “Impact of Fibre Incorporation and Compaction Method on Properties of Pervious Concrete.” Materiales de Construcción 71 (342): e245. https://doi.org/10.3989/mc.2021.08020. DOI: https://doi.org/10.3989/mc.2021.08020

Nazeer, M., K. Kapoor, and S.P. Singh. 2023. “Experimental Investigation of Clogging Mechanism of Pervious Concrete Made with Variable Aggregate Gradations.” Materiales de Construcción 73 (351): e320. https://doi.org/10.3989/mc.2023.319922. DOI: https://doi.org/10.3989/mc.2023.319922

Nguyen, Hoang Quan, Bao Viet Tran, and Thai Son Vu. 2022. “Numerical Approach to Predict the Flexural Damage Behavior of Pervious Concrete.” Case Studies in Construction Materials 16 (June): e00946. https://doi.org/10.1016/J.CSCM.2022.E00946. DOI: https://doi.org/10.1016/j.cscm.2022.e00946

Oni, Bukola, Jun Xia, and Mengdi Liu. 2020. “Mechanical Properties of Pressure Moulded Fibre Reinforced Pervious Concrete Pavement Brick.” Case Studies in Construction Materials 13 (December): e00431. https://doi.org/10.1016/J.CSCM.2020.E00431. DOI: https://doi.org/10.1016/j.cscm.2020.e00431

ONNCCE. 2014. “NMX-C-083-ONNCCE-2014, Determinación de La Resistencia a La Compresión.”. México

ONNCCE. 2015. “NMX-C-191-ONNCCE-2015, Determinación de La Resistencia a La Flexión Del Concreto Usando Una Viga Simple Con Carga En Los Tercios Del Claro.”. México

ONNCCE. 2017. “NMX-C-414-ONNCCE-2017, Cementos Hidráulicos - Especificaciones y Métodos de Ensayo.” México.

ONNCCE. 2019a. “NMX-C-089-ONNCCE-2019, Determinación de Las Frecuencias Fundamentales, Transversales, Longitudinales y Torsionales de Especímenes de Concreto.” México.

ONNCCE. 2019b. “NMX-C-163-ONNCCE-2019, Determinación de La Resistencia a La Tensión Por Compresión Diametral de Cilindros de Concreto-Método de Ensayo.” México

ONNCCE. 2019c. “NMX-C-514-ONNCCE-2019, Resistividad Eléctrica Del Concreto Hidráulico.” México.

Ouarda, Taha B.M.J., Claude Girard, George S. Cavadias, and Bernard Bobée. 2001. “Regional Flood Frequency Estimation with Canonical Correlation Analysis.” Journal of Hydrology 254 (1–4): 157–73. https://doi.org/10.1016/S0022-1694(01)00488-7. DOI: https://doi.org/10.1016/S0022-1694(01)00488-7

Park, Sungwoo, Suhawn Ju, Hyeong Ki Kim, Yo Seob Seo, and Sukhoon Pyo. 2022. “Effect of the Rheological Properties of Fresh Binder on the Compressive Strength of Pervious Concrete.” Journal of Materials Research and Technology 17 (March): 636–48. https://doi.org/10.1016/J.JMRT.2022.01.045. DOI: https://doi.org/10.1016/j.jmrt.2022.01.045

R.A. Viana Marcelo, J. L. Navarro España, H. M. Pinto Prieto. 2012. “Motivaciones de Los Investigadores Académicos En Colombia, Para Generar y Transferir Conocimiento Al Sector Productivo Usando Análisis de Correlación Canónica.” Estudios Gerenciales 28 (124): 125–39. DOI: https://doi.org/10.1016/S0123-5923(12)70219-X

Rangelov, Milena, Somayeh Nassiri, Liv Haselbach, and Karl Englund. 2016. “Using Carbon Fiber Composites for Reinforcing Pervious Concrete.” Construction and Building Materials 126 (November): 875–85. https://doi.org/10.1016/J.CONBUILDMAT.2016.06.035. DOI: https://doi.org/10.1016/j.conbuildmat.2016.06.035

Sherwani, Aryan Far H., Rabar Faraj, Khaleel H. Younis, and Ako Daraei. 2021. “Strength, Abrasion Resistance and Permeability of Artificial Fly-Ash Aggregate Pervious Concrete.” Case Studies in Construction Materials 14 (June): e00502. https://doi.org/10.1016/J.CSCM.2021.E00502. DOI: https://doi.org/10.1016/j.cscm.2021.e00502

Song, Hui, Jinwei Yao, and Junzheng Xiang. 2022. “The Role of Aggregate and Cement Paste in the Deterioration of the Transitional Interface Zone of Pervious Concrete during Freeze-Thaw Cycles.” Case Studies in Construction Materials 16 (June): e01086. https://doi.org/10.1016/J.CSCM.2022.E01086. DOI: https://doi.org/10.1016/j.cscm.2022.e01086

T.K.M Ali, N. Hilal, R.H. Faraj. 2020. “Properties of Eco-Friendly Pervious Concrete Containing Polystyrene Aggregates Reinforced with Waste PET Fibers.” Innovative Infrastructure Solutions 5 (77). https://doi.org/https://doi.org/10.1007/s41062-020-00323-w. DOI: https://doi.org/10.1007/s41062-020-00323-w

Zhong, Rui, Zhen Leng, and Chi sun Poon. 2018. “Research and Application of Pervious Concrete as a Sustainable Pavement Material: A State-of-the-Art and State-of-the-Practice Review.” Construction and Building Materials 183 (September): 544–53. https://doi.org/10.1016/J.CONBUILDMAT.2018.06.131. DOI: https://doi.org/10.1016/j.conbuildmat.2018.06.131

Zhou, Juanlan, Mulian Zheng, Qi Wang, Jiangang Yang, and Tianfa Lin. 2016. “Flexural Fatigue Behavior of Polymer-Modified Pervious Concrete with Single Sized Aggregates.” Construction and Building Materials 124 (October): 897–905. https://doi.org/10.1016/J.CONBUILDMAT.2016.07.136. DOI: https://doi.org/10.1016/j.conbuildmat.2016.07.136

Published

2026-01-01

How to Cite

Gomez-Valdovinos, M. G., Martinez-Molina, W., Muciño-Velez, A., Arreola-Sanchez, M., Chavez-Garcia, H. L., Navarrete-Seras, M. A., … Alonso Guzman, E. M. (2026). Impact of PET and microfiber fibers on the mechanical properties of pervious concrete: a canonical correlation approach. Revista ALCONPAT, 16(1), 127–148. https://doi.org/10.21041/ra.v16i1.822

Issue

Section

Basic Research