Experimental behavior of plain concrete under short-term creep in uniaxial compression and its relation to stiffness change.

  • Bernardo Tadeo Terán-Torres Universidad Autónoma de Nuevo León
  • Cesar Antonio Juárez-Alvarado Universidad Autónoma de Nuevo León
  • Jose Manuel Mendoza-Rangel Universidad Autónoma de Nuevo León
  • Ismael Flores-Vivian Universidad Autónoma de Nuevo León
  • Diego Cavazos-de Lira Universidad Autónoma de Nuevo León
  • Roman Hermosillo-Mendoza Universidad Autónoma de Nuevo León
  • Miguel Dario Bojorquez-Calles Universidad Autónoma de Nuevo León
  • Lucio Guillermo López-Yépez Universidad Autónoma de Nuevo León
Keywords: nonlinear creep, plain concrete, stiffness change, sustained load

Abstract

In this study, specimens were tested under sustained axial compression loads to obtain their short-term creep behavior, i.e., over a period of one hour. The specimens were subjected to various loads (20%, 50%, and 80% of their capacity) at various ages (7, 28, and 90 days), recording the longitudinal and transverse strain over time. Subsequently, the specimens were tested to failure, obtaining the stress-strain curve, compressive strength, and modulus of elasticity. It was found that the specimens subjected to 20% load showed a slight increase in capacity and modulus of elasticity, while those subjected to 50% and 80% loads showed a decrease in capacity and modulus of elasticity for all ages.

Downloads

Download data is not yet available.

References

Abu Al-Rub, R. K., Darabi, M. K. (2012). A thermodynamic framework for constitutive modeling of time- and rate-dependent materials. Part I: Theory. International Journal of Plasticity. 34:61–92. https://doi.org/10.1016/j.ijplas.2012.01.002

ACI Committee 211. (2022). Selecting Proportions for Normal-Density and High-Density Concrete – Guide (ACI PRC-211.1-22). American Concrete Institute, Farmington Hills, MI.

Acker, P., Bažant, Z. P., Chern, J. C., Huet, C., Wittmann, F. H. (1998). Measurement of time-dependent strains of concrete. Materials and Structures. 31(212):507–512. https://doi.org/10.1007/BF02481530

ASTM International. (2018). Standard Specification for Concrete Aggregates (ASTM C33). ASTM International, West Conshohocken, PA.

ASTM International. (2020). Standard Test Method for Slump of Hydraulic-Cement Concrete (ASTM C143). ASTM International, West Conshohocken, PA.

ASTM International. (2021). Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens (ASTM C39). ASTM International, West Conshohocken, PA.

ASTM International. (2024). Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory (ASTM C192). ASTM International, West Conshohocken, PA.

ASTM International. (2009). Standard Practice for Capping Cylindrical Concrete Specimens (ASTM C617-09). ASTM International, West Conshohocken, PA.

ASTM International. (2002). Standard Test Method for Creep of Concrete in Compression (ASTM C512-02). ASTM International, West Conshohocken, PA.

ASTM International. (2014). Standard Test Method for Static Modulus of Elasticity and Poisson’s Ratio of Concrete in Compression (ASTM C469-14). ASTM International, West Conshohocken, PA.

Bažant, Z. P., Prasannan, S. (1989). Solidification Theory for Concrete Creep. II: Verification and Application. Journal of Engineering Mechanics, 115(8):1704–1725. https://doi.org/10.1061/(ASCE)0733-9399(1989)115:8(1704)

Bažant, Z. P., Huet, C. (1999). Thermodynamic Functions for Ageing Viscoelasticity: Integral Form Without Internal Variables. International Journal of Solids and Structures, 36(24):3993–4016. https://doi.org/10.1016/S0020-7683(98)00184-X

Bazant, Z. P., Yu, Q., Li, G. H, Klein, G. J., Kristek, V. (2010). Excessive deflections of record-span prestressed box girder. ACI: Concrete International. 32(6):44-52.

Bazant, Z. P., Hubler, M. H., Yu, Q. (2011). Pervasiveness of Excessive Segmental Bridge Deflections: Wake-Up Call for Creep. ACI: Structural Journal. 108(6):766-774. https://doi.org/10.14359/51683375

Bazant, Z. P., Hubler, M. (2014). Theory of cyclic creep of concrete based on Paris law for fatigue growth of subcritical microcracks. Journal of the Mechanics and Physics of Solids, 63:187-200. https://doi.org/10.1016/j.jmps.2013.09.010

Chen, P., Zheng, W., Wang, Y., Du, K., Chang, W. (2019). Strain recovery model for concrete after compressive creep. Construction and Building Materials, 199:746–755. https://doi.org/10.1016/j.conbuildmat.2018.12.021

Collins, T., (1989). Proportioning High-Strength Concrete to Control Creep and Shrinkage. ACI Materials Journal. 86(6):576-580. https://doi.org/10.14359/2211

Iravani, S., MacGregor, J. G. (1998). Sustained Load Strength and Short-Term Strain Behavior of High-Strength Concrete. ACI Materials Journal. 95(5):636–647. https://doi.org/10.14359/406

Liang, W., Wang, S., Lv, X., Li, Y. (2025). Dynamic mechanical properties and damage constitutive model of frozen–thawed basalt fiber-reinforced concrete under wide strain rate range. Materials, 18(14),3337. https://doi.org/10.3390/ma18143337

Linz, P. (1985). Analytical and Numerical Methods for Volterra Equations. Philadelphia: Society for Industrial and Applied Mathematics (SIAM). ISBN: 978-0898711981.

Loo, Y. H. (1992). A new method for microcrack evaluation in concrete under compression. Materials and Structures. 25(10):573-578. https://doi.org/10.1007/BF02472225

Mazzotti C., Savoia, M. (2001). An isotropic damage model for nonlinear creep behavior of concrete in compression. Fracture Mechanics of Concrete Structures. pp. 255-262.

Mazzotti, C., Savoia, M. (2002). Nonlinear creep, Poisson’s ratio, and creep-damage interaction of concrete in compression. ACI Materials Journal. 99(5): 450–457. https://doi.org/10.14359/12323

Mei, S.-q., Zhang, J.-c., Wang, Y.-f., Zou, R.-f. (2017). Creep-recovery of normal strength and high strength concrete. Construction and Building Materials, 156:175–183. https://doi.org/10.1016/j.conbuildmat.2017.08.163

Murakami, S. (2012). Continuum Damage Mechanics: A Continuum Mechanics Approach to the Analysis of Damage and Fracture. Solid Mechanics and Its Applications, Vol. 185. Dordrecht: Springer.

Murakami, S., Kamiya, K. (1997). Constitutive and damage evolution equations of elastic-brittle materials based on irreversible thermodynamics. International Journal of Mechanical Sciences, 39(4): 473–486. https://doi.org/10.1016/S0020-7403(96)00044-5

Narayanan, S. (2021). Elastic Modulus of Concrete. CE & CR. July:1-7.

Neville, A. M. (2011). “Properties of Concrete”. Pearson Education Limited, Cap 9.

Ouzandja, D. J., Talhaoui, A., Belmekki, M., Bachari, H. (2023). 3D numerical simulation of seismic failure of a concrete gravity dam considering base sliding. Modelling in Civil and Environmental Engineering, 17(2), 43–53. https://doi.org/10.2478/mmce-2022-0010

Pan, Z., Cao, D., Zeng, B., Wang, Y. (2022). Nonlinear Creep Amplification Factor Considering Damage Evolution of Concrete under Compression. Materials, 15(19). https://doi.org/10.3390/ma15196742

Rossi, P., Tailhan, J.-L., Le Maou, F., Gaillet, L., Martin, E. (2012). Basic creep behavior of concretes: Investigation of the physical mechanisms by using acoustic emission. Cement and Concrete Research. 42(1):61–73. https://doi.org/10.1016/j.cemconres.2011.07.011

Shah, S. P., Chandra, S. (1970). Fracture of Concrete Subjected to Cyclic and Sustained Loading. Journal Proceedings of the American Concrete Institute. 67(10):816–827. https://doi.org/10.14359/7312

Su, L., Wang, Y.-f., Mei, S.-q., Li, P.-f. (2017). Experimental investigation on the fundamental behavior of concrete creep. Construction and Building Materials, 152:250–258. https://doi.org/10.1016/j.conbuildmat.2017.06.162

Tamtsia, B. T., Beaudoin, J. J. (2000). Basic creep of hardened cement paste: A re-examination of the role of water. Cement and Concrete Research. 30(9): 1465–1475. https://doi.org/10.1016/S0008-8846(00)00279-9

Tang, C., Zheng, W., Wang, Y. (2020). Creep Failure of Concrete under High Stress. Journal of Testing and Evaluation, 48(5): 3410–3416. https://doi.org/10.1520/JTE20170554

Terán-Torres, B. T., Mohammadi, J., Nair, S. E., Mendoza-Rangel, J. M., Flores-Vivian, I., Juárez-Alvarado, C. A. (2024), Non-Linear Creep-Relaxation Constitutive Damage Model for Aging Concrete. Applied Science. 14(10):1-28. https://doi.org/10.3390/app14104270

Vandewalle, L. (2000). Concrete creep and shrinkage at cyclic ambient conditions. Cement & Concrete Composites. 22(3): 201-208. https://doi.org/10.1016/S0958-9465(00)00004-4

Zhaoxia, L. (1994). Effective Creep Poisson's Ratio for Damaged Concrete. International Journal of Fracture, 66(2):189–196. https://doi.org/10.1007/BF00020083

Zhong, K., Deierlein, G. G. (2019). Low cycle fatigue effects on the seismic performance of concrete frame and wall systems with high strength reinforcing steel. CRC, Pankow Foundation / ACI Foundation. https://doi.org/10.1016/51734214

Zhou, M., Chen, Y. (2024). Fatigue assessment of reinforced concrete bridge decks under realistic traffic loading using a hybrid model. Advances in Bridge Engineering, 5(1), 12. https://doi.org/10.1186/s43251-023-00112-2

Published
2025-09-01
How to Cite
Terán-Torres, B. T., Juárez Alvarado, C. A., Mendoza Rangel, J. M., Flores Vivian, I., Cavazos de Lira, D., Hermosillo Mendoza, R., Bojorquez Calles, M. D., & Lopez Yepez, L. G. (2025). Experimental behavior of plain concrete under short-term creep in uniaxial compression and its relation to stiffness change. Revista ALCONPAT, 15(3), 315 - 334. https://doi.org/10.21041/ra.v15i3.836