Multifunctional conductive concretes: advances, applications, and challenges for smart infrastructure.
DOI:
https://doi.org/10.21041/ra.v16i1.876Keywords:
conductive concrete, multifunctionality, piezoresistivity, heating and defrosting, shieldingAbstract
This article presents the foundations and evolution of research into the main functionalities developed using conductive cementitious materials. Multifunctional conductive concrete represents an innovation in the field of cement-based materials, exhibiting not only structural capabilities but also electrical, thermal, and sensing functions. The addressed functions are: a) strain and structural damage sensing in a load bearing structure without the need for any attached or embedded sensor; b) heating and de-icing function through the Joule effect, for applications such as surface de-icing or building heating; and c) electromagnetic interference (EMI) shielding provided by the conductive structure itself.
Downloads
References
Abden, Md Jaynul, Vivian W. Y. Tam, Jannatul Dil Afroze, Khoa N. Le. (2024). “Energy Efficient Sustainable Concrete for Multifunctional Applications.” Construction and Building Materials, 418:135213. https://doi.org/10.1016/j.conbuildmat.2024.135213. DOI: https://doi.org/10.1016/j.conbuildmat.2024.135213
Andrade, C., J. M., Diez, A., Alamán, Alonso, C. (1995). “Mathematical Modelling of Electrochemical Chloride Extraction from Concrete.” https://doi.org/10.1016/0008-8846(95)00063-I. DOI: https://doi.org/10.1016/0008-8846(95)00063-I
Oumer, A., Lee, C., Ahn, E., Gwon, S. (2024). “Review on Self-Heating Electrically Conductive Cementitious Composites: Focus on Deicing and Electrical Curing.” Construction and Building Materials, 439:137232. https://doi.org/10.1016/J.CONBUILDMAT.2024.137232. DOI: https://doi.org/10.1016/j.conbuildmat.2024.137232
Baeza, F. J., Chung, D. D. L., Zornoza, E., Andión, L. G., Garcés, P. (2010). “Triple Percolation in Concrete Reinforced with Carbon Fiber.” ACI Materials Journal, 107(4):396–402. DOI: https://doi.org/10.14359/51663866
Baeza, F. J., Galao, O., Zornoza, E., Garcés, P. (2013). “Effect of Aspect Ratio on Strain Sensing Capacity of Carbon Fiber Reinforced Cement Composites.” Materials and Design, 51:1085–94. https://doi.org/10.1016/j.matdes.2013.05.010. DOI: https://doi.org/10.1016/j.matdes.2013.05.010
Baeza, F. J., Zornoza, E., Andión, L. G., Ivorra, S., Garcés, P. (2011). “Variables Affecting Strain Sensing Function in Cementitious Composites with Carbon Fibers.” Computers and Concrete, 8(2):229–41. https://doi.org/10.12989/cac.2011.8.2.229 DOI: https://doi.org/10.12989/cac.2011.8.2.229
Bertolini, L., Yu, S. W., Page, C. L. (1996). “Effects of Electrochemical Chloride Extraction on Chemical and Mechanical Properties of Hydrated Cement Paste.” Advances in Cement Research, 8(31):93–100. https://doi.org/10.1680/adcr.1996.8.31.93. DOI: https://doi.org/10.1680/adcr.1996.8.31.93
Bertolini, L., Bolzoni, F., Pastore, T., Pedeferri, P. (2004). “Effectiveness of a Conductive Cementitious Mortar Anode for Cathodic Protection of Steel in Concrete.” Cement and Concrete Research, 34(4):681–94. https://doi.org/10.1016/j.cemconres.2003.10.018 DOI: https://doi.org/10.1016/j.cemconres.2003.10.018
Birgin, H. B., D’Alessandro, A., Favaro, M., Sangiorgi, C., Laflamme, S., Ubertini, F. (2022). “Field Investigation of Novel Self-Sensing Asphalt Pavement for Weigh-in-Motion Sensing.” Smart Materials and Structures, 31(8):085004. https://doi.org/10.1088/1361-665X/ac7922. DOI: https://doi.org/10.1088/1361-665X/ac7922
Camacho-Ballesta, C., Zornoza, E., Garcés, P., Zornoza, E. 2016. “Performance of Cement-Based Sensors with CNT for Strain Sensing.” Advances in Cement Research, 28(4):274–84. https://doi.org/10.1680/adcr.14.00120. DOI: https://doi.org/10.1680/adcr.14.00120
Carmona, J., Garcés, P., Climent, M. A. (2015). “Efficiency of a Conductive Cement-Based Anodic System for the Application of Cathodic Protection, Cathodic Prevention and Electrochemical Chloride Extraction to Control Corrosion in Reinforced Concrete Structures.” Corrosion Science, 96:102–11. https://doi.org/10.1016/j.corsci.2015.04.012. DOI: https://doi.org/10.1016/j.corsci.2015.04.012
Carmona, J., Climent, M.-Á., Antón, C., Vera, G., Garcés, P. (2015). “Shape Effect of Electrochemical Chloride Extraction in Structural Reinforced Concrete Elements Using a New Cement-Based Anodic System.” Materials, 8(6):2901–17. https://doi.org/10.3390/ma8062901. DOI: https://doi.org/10.3390/ma8062901
Chung, D. D. L. (2000). “Cement-Based Materials for Stress Sensing by Electrical Resistance Measurement.” Cement and Concrete Composites, 22(6):409–4017.
Chung, D. D. L. (2003). Multifunctional Cement-Based Materials. edited by 2003 CRC Press. Buffalo, New York, USA.
Chung, D. D. L. (2004a). “Review Electrical Applications of Carbon Materials.” Journal of Materials Science, 29:2645–61. DOI: https://doi.org/10.1023/B:JMSC.0000021439.18202.ea
Chung, D D L. (2004). “Self-Heating Structural Materials.” Smart Materials and Structures, 13(3):562–65. https://doi.org/10.1088/0964-1726/13/3/015.
Chung, D. D. L. (2004b). “Self-Heating Structural Materials.” Smart Materials and Structures, 13(3):562–65. https://doi.org/10.1088/0964-1726/13/3/015. DOI: https://doi.org/10.1088/0964-1726/13/3/015
Chung, D. D. L. (2024). Functional Materials. Vol. 4. 2nd ed. edited by World Scientific.
Chung, D. D. L., Ozturk, M. (2024). “Spatially Resolved Capacitance-Based Stress Self-Sensing in Concrete.” ISA Transactions, 152:299–307. https://doi.org/10.1016/j.isatra.2024.06.034. DOI: https://doi.org/10.1016/j.isatra.2024.06.034
Climent, M. A., Sanchez de Rojas, M. J., de Vera, G., Garces, P. (2006). “Effect of Type of Anodic Arrangements on Efficiency of Electrochemical Chloride Removal from Concrete.” ACI Materials Journal, 103(4):243–50. DOI: https://doi.org/10.14359/16607
D’Alessandro, A., Rallini, M., Ubertini, F., Materazzi, A. L., Kenny, J. M. (2016). “Investigations on Scalable Fabrication Procedures for Self-Sensing Carbon Nanotube Cement-Matrix Composites for SHM Applications.” Cement and Concrete Composites, 65:200–213. https://doi.org/10.1016/j.cemconcomp.2015.11.001. DOI: https://doi.org/10.1016/j.cemconcomp.2015.11.001
Deng, G., Zhang, M., Zhang, J., He, Y., Li, M. (2023). “Temperature Self-Controlled Concrete: Electro-Thermal Performance and Active Temperature Control Strategy.” Structures. 58:105629. https://doi.org/10.1016/J.ISTRUC.2023.105629. DOI: https://doi.org/10.1016/j.istruc.2023.105629
Downey, A., D’Alessandro, A., Laflamme, S., Ubertini, F. (2018). “Smart Bricks for Strain Sensing and Crack Detection in Masonry Structures.” Smart Materials and Structures. 27(1):015009. https://doi.org/10.1088/1361-665X/aa98c2. DOI: https://doi.org/10.1088/1361-665X/aa98c2
Fajardo, G., Escadeillas, G., Arliguie, G. (2006). “Electrochemical Chloride Extraction (ECE) from Steel-Reinforced Concrete Specimens Contaminated by ‘Artificial’ Sea-Water.” Corrosion Science, 48(1):110–25. https://doi.org/10.1016/j.corsci.2004.11.015. DOI: https://doi.org/10.1016/j.corsci.2004.11.015
Faneca, G., Ikumi, T., Torrents, J. M., Aguado, A., Segura, I. (2020). “Conductive Concrete Made from Recycled Carbon Fibres for Self-Heating and de-Icing Applications in Urban Furniture.” Materiales de Construcción, 70(339):e223. https://doi.org/10.3989/mc.2020.17019. DOI: https://doi.org/10.3989/mc.2020.17019
Farcas, C., Galao, O., Navarro, R., Zornoza, E., Baeza, F. J., Del Moral, B., Pla, R., Garcés, P. (2021). “Heating and De-Icing Function in Conductive Concrete and Cement Paste with the Hybrid Addition of Carbon Nanotubes and Graphite Products.” Smart Materials and Structures, 30(4):045010. https://doi.org/10.1088/1361-665X/abe032. DOI: https://doi.org/10.1088/1361-665X/abe032
Fu, X., Chung, D. D. L. (1995). “Carbon Fiber Reinforced Mortar as an Electrical Contact Material for Cathodic Protection.” Cement and Concrete Research. 25(4):689–94. DOI: https://doi.org/10.1016/0008-8846(95)00057-J
Galao, O., Baeza, F. J., Zornoza, E., Garces, P. (2014). “Strain and Damage Sensing Properties on Multifunctional Cement Composites with CNF Admixture.” Cement & Concrete Composites. https://doi.org/10.1016/j.cemconcomp.2013.11.009. DOI: https://doi.org/10.1016/j.cemconcomp.2013.11.009
Galao, O., Bañón, L., Baeza, F. J., Carmona, J., Garcés, P. (2016). “Highly Conductive Carbon Fiber Reinforced Concrete for Icing Prevention and Curing.” Materials. 9(4). doi:10.3390/ma9040281. DOI: https://doi.org/10.3390/ma9040281
Garcés, P., Fraile, J., Vilaplana-Ortego, E., Cazorla-Amorós, D., Alcocel, E. G. G., Andión, L. G. G. (2005). “Effect of Carbon Fibres on the Mechanical Properties and Corrosion Levels of Reinforced Portland Cement Mortars.” Cement and Concrete Research. 35(2):324–31. https://doi.org/10.1016/j.cemconres.2004.05.013. DOI: https://doi.org/10.1016/j.cemconres.2004.05.013
Garcés, P., Zornoza, E., Garcia Andion, L., Baeza, F. J., Galao, O. (2010). Hormigones Conductores Multifuncionales. edited by Editorial Club Universitario. Alicante: Editorial Club Universitario.
García-Macías, E., D’Alessandro, A., Castro-Triguero, R., Pérez-Mira, D., Ubertini, F. (2017). “Micromechanics Modeling of the Uniaxial Strain-Sensing Property of Carbon Nanotube Cement-Matrix Composites for SHM Applications.” Composite Structures. 163:195–215. https://doi.org/10.1016/j.compstruct.2016.12.014. DOI: https://doi.org/10.1016/j.compstruct.2016.12.014
García-Macías, E., Ubertini, F. (2019). “Earthquake-Induced Damage Detection and Localization in Masonry Structures Using Smart Bricks and Kriging Strain Reconstruction: A Numerical Study.” Earthquake Engineering & Structural Dynamics. 48(5):548–69. https://doi.org/10.1002/eqe.3148. DOI: https://doi.org/10.1002/eqe.3148
Gomis, J., Galao, O., Gomis, V., Zornoza, E., Garces, P. (2015). “Self-Heating and Deicing Conductive Cement. Experimental Study and Modeling.” Construction and Building Materials. https://doi.org/10.1016/j.conbuildmat.2014.11.042. DOI: https://doi.org/10.1016/j.conbuildmat.2014.11.042
Han, Baoguo, Siqi Ding, and Xun Yu. 2015. “Intrinsic Self-Sensing Concrete and Structures: A Review.” Measurement 59:110–28. https://doi.org/10.1016/j.measurement.2014.09.048. DOI: https://doi.org/10.1016/j.measurement.2014.09.048
Ivorra, S., Garcés, P., Catalá, G., Andión, L. G., Zornoza, E. (2010). “Effect of Silica Fume Particle Size on Mechanical Properties of Short Carbon Fiber Reinforced Concrete.” Materials and Design. 31(3):1553–58. https://doi.org/10.1016/j.matdes.2009.09.050. DOI: https://doi.org/10.1016/j.matdes.2009.09.050
Konsta-Gdoutos, M. S., Aza, C. A. (2014). “Self Sensing Carbon Nanotube (CNT) and Nanofiber (CNF) Cementitious Composites for Real Time Damage Assessment in Smart Structures.” Cement and Concrete Composites. 53. https://doi.org/10.1016/j.cemconcomp.2014.07.003. DOI: https://doi.org/10.1016/j.cemconcomp.2014.07.003
Kumar, R., Sahoo, S., Joanni, E., Singh, R. K., Tan, W. K., Kar, K. K., Matsuda, A. (2021). “Recent Progress on Carbon-Based Composite Materials for Microwave Electromagnetic Interference Shielding.” Carbon. 177:304–31. https://doi.org/10.1016/j.carbon.2021.02.091. DOI: https://doi.org/10.1016/j.carbon.2021.02.091
Lankard, D. R., Slater, J. E., Hedden, W. A., Niesz, D. E. (1975). Neutralization of Chloride in Concrete.
Lazzari, L., Pedeferri, P. (2006). Cathodic Protection. 1st ed. Polipress, Milano. DOI: https://doi.org/10.5006/C2006-06290
Li, Z., Guo, T., Chen, Y., Lu, Y., Niu, X., Yang, X., Jin, L. (2022). “Study on Road Performance and Electrothermal Performance of Poured Conductive Asphalt Concrete.” Advances in Materials Science and Engineering. 2022(1):2462126. https://doi.org/10.1155/2022/2462126. DOI: https://doi.org/10.1155/2022/2462126
Liu, H., Laflamme, S., Cai, B., Lyu, P., Sritharan, S., Wang, K. (2024). “Investigation of 3D Printed Self-Sensing UHPC Composites Using Graphite and Hybrid Carbon Microfibers.” Sensors. 24. https://doi.org/10.3390/s24237638. DOI: https://doi.org/10.3390/s24237638
Meoni, A., Mattiacci, M., D’Alessandro, A., Virgulto, G., Buratti, N., Ubertini, F. (2025). “Automated Damage Detection in Masonry Structures Using Cointegrated Strain Measurements from Smart Bricks: Application to a Full-Scale Building Model Subjected to Foundation Settlements under Changing Environmental Conditions.” Journal of Building Engineering. 100:111749. https://doi.org/10.1016/J.JOBE.2024.111749. DOI: https://doi.org/10.1016/j.jobe.2024.111749
del Moral, B., Baeza, F. J., Navarro, R., Galao, O., Zornoza, E., Vera, J., Farcas, C., Garcés, P. (2021). “Temperature and Humidity Influence on the Strain Sensing Performance of Hybrid Carbon Nanotubes and Graphite Cement Composites.” Construction and Building Materials. 284:122786. https://doi.org/10.1016/j.conbuildmat.2021.122786. DOI: https://doi.org/10.1016/j.conbuildmat.2021.122786
Ozturk, M., Chung, D. D. L. (2024). “Piezopermittivity of Cement Mortar with Various Water Contents and Its Application to Capacitance-Based Structural Self-Sensing of Stress.” Sensors and Actuators A: Physical. 369:115206. https://doi.org/10.1016/j.sna.2024.115206. DOI: https://doi.org/10.1016/j.sna.2024.115206
Park, S., Hwang, H., Lee, H., Chung, W. (2024). “A Full-Scale Test on Enhancing the Thermal Performance of a Concrete Slab Embedded with a MWCNT Heating Module Exposed to an Outdoor Environment.” Buildings. 14(3):775. DOI: https://doi.org/10.3390/buildings14030775
Pérez, A., Climent, M. A., Garcés, P. (2010). “Electrochemical Extraction of Chlorides from Reinforced Concrete Using a Conductive Cement Paste as the Anode.” Corrosion Science. 52(5):1576–81. https://doi.org/10.1016/j.corsci.2010.01.016. DOI: https://doi.org/10.1016/j.corsci.2010.01.016
Qin, H., Ding, S., Ashour, A., Zheng, Q., Han, B. (2024). “Revolutionizing Infrastructure: The Evolving Landscape of Electricity-Based Multifunctional Concrete from Concept to Practice.” Progress in Materials Science. 145:101310. https://doi.org/10.1016/j.pmatsci.2024.101310. DOI: https://doi.org/10.1016/j.pmatsci.2024.101310
Rahman, Md L., Malakooti, A., Ceylan, H., Kim, S., Taylor, P. C. (2022). “A Review of Electrically Conductive Concrete Heated Pavement System Technology: From the Laboratory to the Full-Scale Implementation.” Construction and Building Materials. 329:127139. https://doi.org/10.1016/J.CONBUILDMAT.2022.127139. DOI: https://doi.org/10.1016/j.conbuildmat.2022.127139
Shama Rao, N., Simha, T. G. A., Rao, K. P., Ravi Kumar, G. V. V. (2018). Carbon Composites are Becoming Competitive and Cost Effective. Infosys.
Sassani, A., Arabzadeh, A., Ceylan, H., Kim, S., Sajed Sadati, S. M., Gopalakrishnan, K., Taylor, P. C., Abdualla, H. (2018). “Carbon Fiber-Based Electrically Conductive Concrete for Salt-Free Deicing of Pavements.” Journal of Cleaner Production. 203:799–809. https://doi.org/10.1016/J.JCLEPRO.2018.08.315. DOI: https://doi.org/10.1016/j.jclepro.2018.08.315
Rocha Segundo, I., Freitas, E., Castelo Branco, V. T. F., Landi Jr., S., Costa, M. F., Carneiro, J. O. (2021). “Review and Analysis of Advances in Functionalized, Smart, and Multifunctional Asphalt Mixtures.” Renewable and Sustainable Energy Reviews. 151:111552. https://doi.org/10.1016/j.rser.2021.111552. DOI: https://doi.org/10.1016/j.rser.2021.111552
Shi, Z.-Q., Chung, D. D. L. (1999). “Carbon Fiber-Reinforced Concrete for Traffic Monitoring and Weighing in Motion.” Cement and Concrete Research. 29(3):435–39. https://doi.org/10.1016/S0008-8846(98)00204-X DOI: https://doi.org/10.1016/S0008-8846(98)00204-X
Song, F., Li, Q., Xu, S. (2024). “A Review of Self-Sensing Ultra-High Performance Concrete: Towards next-Generation Smart Structural Materials.” Cement and Concrete Composites. 145:105350. https://doi.org/10.1016/j.cemconcomp.2023.105350. DOI: https://doi.org/10.1016/j.cemconcomp.2023.105350
Sousa, I., D’Alessandro, A., Mesquita, E., Laflamme, S., Ubertini. F. (2024). “Comprehensive Review of 3D Printed Cementitious Composites with Carbon Inclusions: Current Status and Perspective for Self-Sensing Capabilities.” Journal of Building Engineering. 98:111192. https://doi.org/10.1016/J.JOBE.2024.111192. DOI: https://doi.org/10.1016/j.jobe.2024.111192
Tritthart, J. 1998. “Electrochemical Chloride Removal: An Overview and Scientific Aspects.” The American Ceramic Society. 401–41.
Tuan, C., Yehia. S. (2004). “Implementation of Conductive Concrete Overlay for Bridge Deck Deicing at Roca, Nebraska.” in Civil Engineering Faculty Proceedings & Presentations. 3.
Vennesland, Ø., Opsahl, O. A. (1989). “Patent. Removal of Chlorides from Concrete.”
Vilaplana, J. L., Baeza, F. J., Galao, O., Alcocel, E. G., Zornoza, E., Garcés, P. (2016). “Mechanical Properties of Alkali Activated Blast Furnace Slag Pastes Reinforced with Carbon Fibers.” Construction and Building Materials. 116:63–71. https://doi.org/10.1016/j.conbuildmat.2016.04.066. DOI: https://doi.org/10.1016/j.conbuildmat.2016.04.066
Yehia, S., Tuan, C. Y. (1999). “Conductive Concrete Overlay for Bridge Deck Deicing.” ACI Materials Journal. 96(3):382–90. DOI: https://doi.org/10.14359/637
Zornoza, E., Catalá, G., Jiménez, F., Andión, L. Ga, Garcés, P. (2010). “Electromagnetic Interference Shielding with Portland Cement Paste Containing Carbon Materials and Processed Fly Ash.” Materiales de Construcción. 60(300):21–32. https://doi.org/10.3989/mc.2010.51009. DOI: https://doi.org/10.3989/mc.2010.51009
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 Garcés Terradillos, P., Galao, O., Ubertini, F.

This work is licensed under a Creative Commons Attribution 4.0 International License.
_______________________________
License in effect from September 2020
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.













.png)













