Durability and sustainability performance of Portland limestone cements.

Authors

  • D. M. Solís Cruz Department of Civil Engineering, University of Ottawa, Ottawa, ON, Canada.
  • A. A. Torres-Acosta Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias, Departamento de Tecnologías Sostenibles y Civil, Santiago de Querétaro, México
  • B. Martín-Pérez

DOI:

https://doi.org/10.21041/ra.v16i1.975

Keywords:

Portland limestone cement, compressive strength, porosity, chloride ingress, carbonat

Abstract

This paper reviews the mechanical, microstructural, and durability performance of Portland-limestone cement (PLC) as a sustainable alternative to traditional Portland cement. A systematic analysis of literature spanning almost five decades was conducted, focusing on compressive strength, porosity, chloride ingress, and carbonation in mortars and concretes. Results indicate that PLC generally provides adequate early-age strength, while porosity, chloride diffusion, and carbonation increase with higher limestone content; these effects can be mitigated by optimizing water-to-cement ratio and incorporating supplementary cementitious materials. Limitations include inconsistent experimental protocols, variable curing durations, and limited long-term data. The originality lies in synthesizing PLC performance across multiple durability metrics and highlighting research gaps. Overall, the study emphasizes the need for integrated, performance-based evaluation to ensure sustainable and durable concrete applications.

This paper reviews the mechanical, microstructural, and durability performance of Portland-limestone cement (PLC) as a sustainable alternative to traditional Portland cement. A systematic analysis of literature spanning almost five decades was conducted, focusing on compressive strength, porosity, chloride ingress, and carbonation in mortars and concretes. Results indicate that PLC generally provides adequate early-age strength, while porosity, chloride diffusion, and carbonation increase with higher limestone content; these effects can be mitigated by optimizing water-to-cement ratio and incorporating supplementary cementitious materials. Limitations include inconsistent experimental protocols, variable curing durations, and limited long-term data. The originality lies in synthesizing PLC performance across multiple durability metrics and highlighting research gaps. Overall, the study emphasizes the need for integrated, performance-based evaluation to ensure sustainable and durable concrete applications.

Downloads

Download data is not yet available.

References

Abd-El-Aziz, M. A., and M. Heikal. (2009). “Characteristics and Durability of Cements Containing Fly Ash and Limestone Subjected to Caron’s Lake Water.” Advances in Cement Research 21 (3): 91–99. https://doi.org/10.1680/adcr.2007.00025. DOI: https://doi.org/10.1680/adcr.2007.00025

Achour, Taoufik, André Lecomte, Mongi ben Ouezdou, Rachid Mensi, and Imène Joudi. (2008). “Contribution Des Fillers Calcaires à l’adhérence Pâte-Granulat. Exemples Tunisiens.” Materials and Structures/Materiaux et Constructions 41 (5): 815–30. https://doi.org/10.1617/s11527-007-9287-0. DOI: https://doi.org/10.1617/s11527-007-9287-0

Adams, Lawrence D., and Ronald M. Race. (1990). “Effect of Limestone Additions Upon Drying Shrinkage of Portland Cement Mortar.” www.astm.org. DOI: https://doi.org/10.1520/STP23470S

Aguayo, Matthew, Pu Yang, Kirk Vance, Gaurav Sant, and Narayanan Neithalath. (2014). “Electrically Driven Chloride Ion Transport in Blended Binder Concretes: Insights from Experiments and Numerical Simulations.” Cement and Concrete Research 66 (August): 1–10. https://doi.org/10.1016/j.cemconres.2014.07.022. DOI: https://doi.org/10.1016/j.cemconres.2014.07.022

Ahmad, Shamsad, Saheed Kolawole Adekunle, Mohammed Maslehuddin, and Abul Kalam Azad. (2014). “Properties of Self-Consolidating Concrete Made Utilizing Alternative Mineral Fillers.” Construction and Building Materials 68 (October): 268–76. https://doi.org/10.1016/j.conbuildmat.2014.06.096. DOI: https://doi.org/10.1016/j.conbuildmat.2014.06.096

Ahmad, Shamsad, and Saheed Kolawole Adekunle. (2020). “Utilization of Limestone Powder and Metakaolin as Mineral Fillers in High-Performance Self-Compacting Concrete.” In RILEM Bookseries, 25:701–12. Springer. https://doi.org/10.1007/978-981-15-2806-4_78. DOI: https://doi.org/10.1007/978-981-15-2806-4_78

Ahmad, I., Shen, D., Khan, K.A., Jan, A., Ahmad, T. (2022), “Evaluation of mechanical properties and environmental impact of using limestone powder in high-performance concrete,” Magazine of Concrete Research, V.74, No. 24), pp. 1280-1295. DOI: https://doi.org/10.1680/jmacr.21.00199

Ali, A. H., A. M. Kandeel, and A. S. Ouda. (2013). “Hydration Characteristics of Limestone Filled Cement Pastes.” Chemistry and Materials Research. Vol. 5. http://www.hbrc.edu.eg.

Allahverdi, Ali, and Shiva Salem. (2010). “Simultaneous influences of microsilica and limestone powder on properties of portland cement paste.” Original Papers Ceramics-Silikáty. Vol. 54.

Al-Mulla, Ikram F., Ammar S. Al-Rihimy, and Maitham S. Abd Alameer. (2020). “Properties of Engineered Cementitious Composite Concrete (Bendable Concrete) Produced Using Portland Limestone Cement.” In IOP Conference Series: Materials Science and Engineering. Vol. 671. Institute of Physics Publishing. https://doi.org/10.1088/1757-899X/671/1/012131. DOI: https://doi.org/10.1088/1757-899X/671/1/012131

Anagnostopoulos, N., K. K. Sideris, and A. Georgiadis. (2009). “Mechanical Characteristics of Self-Compacting Concretes with Different Filler Materials, Exposed to Elevated Temperatures.” Materials and Structures/Materiaux et Constructions 42 (10): 1393–1405. https://doi.org/10.1617/s11527-008-9459-6. DOI: https://doi.org/10.1617/s11527-008-9459-6

Antoni, M., J. Rossen, F. Martirena, and K. Scrivener. (2012). “Cement Substitution by a Combination of Metakaolin and Limestone.” Cement and Concrete Research 42 (12): 1579–89. https://doi.org/10.1016/j.cemconres.2012.09.006. DOI: https://doi.org/10.1016/j.cemconres.2012.09.006

Aqel, M., and D. K. Panesar. (2016). “Hydration Kinetics and Compressive Strength of Steam-Cured Cement Pastes and Mortars Containing Limestone Filler.” Construction and Building Materials 113 (June): 359–68. https://doi.org/10.1016/j.conbuildmat.2016.03.031. DOI: https://doi.org/10.1016/j.conbuildmat.2016.03.031

Aqel, Mohmmad, and Daman Panesar. (2020). “Physical and Chemical Effects of Limestone Filler on the Hydration of Steam Cured Cement Paste and Mortar.” Revista ALCONPAT 10 (2): 191–205. https://doi.org/10.21041/ra.v10i2.481. DOI: https://doi.org/10.21041/ra.v10i2.481

Assié, Stéphan, Gilles Escadeillas, and Vincent Waller. (2007). “Estimates of Self-Compacting Concrete ‘potential’ Durability.” Construction and Building Materials 21 (10): 1909–17. https://doi.org/10.1016/j.conbuildmat.2006.06.034. DOI: https://doi.org/10.1016/j.conbuildmat.2006.06.034

ASTM International. (2022), ASTM C150/C150M-22: Standard Specification for Portland Cement. https://www.astm.org/c0150_c0150m-22.html

ASTM International. (2022), ASTM C1556-22: Standard Test Method for Determining the Apparent Chloride Diffusion Coefficient of Cementitious Mixtures by Bulk Diffusion. https://www.astm.org/c1556-22.html

Atiemo, Eugene, Charles Kwame Kankam, Francis Momade, and Kwabena Appiah Boakye. (2014). “Hydration Properties of Calcined Clay Pozzolan and Limestone Mineral Admixtures in Binary and Ternary Cements.” Journal of Physical Science and Application. Vol. 4.

Attari, Azadeh, Ciaran McNally, and Mark G. Richardson. (2016). “A Probabilistic Assessment of the Influence of Age Factor on the Service Life of Concretes with Limestone Cement/GGBS Binders.” Construction and Building Materials 111 (May): 488–94. https://doi.org/10.1016/j.conbuildmat.2016.02.113. DOI: https://doi.org/10.1016/j.conbuildmat.2016.02.113

Audenaert, K., Q. Yuan, and G. de Schutter. (2010). “On the Time Dependency of the Chloride Migration Coefficient in Concrete.” Construction and Building Materials 24 (3): 396–402. https://doi.org/10.1016/j.conbuildmat.2009.07.003. DOI: https://doi.org/10.1016/j.conbuildmat.2009.07.003

Badogiannis, Efstratios G., Ioannis P. Sfikas, Dimitra v. Voukia, Konstantinos G. Trezos, and Sotirios G. Tsivilis. (2015). “Durability of Metakaolin Self-Compacting Concrete.” Construction and Building Materials 82 (May): 133–41. https://doi.org/10.1016/j.conbuildmat.2015.02.023. DOI: https://doi.org/10.1016/j.conbuildmat.2015.02.023

Balayssac, J. P., Ch H D&rich6, and J. Grandet. (1995). “Of Curing upon Carbonation of Concrete.” Construction and Building Materials. Vol. 9. DOI: https://doi.org/10.1016/0950-0618(95)00001-V

Barkera, A. P., and D. W. Hobbsb. (1999). “Performance of Portland Limestone Cements in Mortar Prisms Immersed in Sulfate Solutions at 5°C.” Cement and Concrete Composites. Vol. 21. DOI: https://doi.org/10.1016/S0958-9465(98)00009-2

Barluenga, Gonzalo, Irene Palomar, and Javier Puentes. (2013). “Early Age and Hardened Performance of Cement Pastes Combining Mineral Additions.” Materials and Structures/Materiaux et Constructions 46 (6): 921–41. https://doi.org/10.1617/s11527-012-9944-9. DOI: https://doi.org/10.1617/s11527-012-9944-9

Barrett, Timothy J., Hongfang Sun, Tommy Nantung, and W. Jason Weiss. (2014). “Performance of Portland Limestone Cements.” Transportation Research Record. National Research Council. https://doi.org/10.3141/2441-15. DOI: https://doi.org/10.3141/2441-15

Barrett, Timothy, Hongfang Sun, and W. Jason Weiss. (2013). “Performance of Portland Limestone Cements: Cements Designed to Be More Sustainable That Include up to 15% Limestone Addition.” https://doi.org/10.5703/1288284315335. DOI: https://doi.org/10.5703/1288284315335

Beeralingegowda, B., and V. D. Gundakalle. (2007). “The effect of addition of limestone powder on the properties of self-compacting concrete.” International Journal of Innovative Research in Science, Engineering and Technology (An ISO. Vol. 3297. www.ijirset.com.

Benachour, Y., C. A. Davy, F. Skoczylas, and H. Houari. (2008). “Effect of a High Calcite Filler Addition upon Microstructural, Mechanical, Shrinkage and Transport Properties of a Mortar.” Cement and Concrete Research 38 (6): 727–36. https://doi.org/10.1016/j.cemconres.2008.02.007. DOI: https://doi.org/10.1016/j.cemconres.2008.02.007

Bentz, D. P., Edgardo Fabian Irassar, and William Jason Weiss. (2014). “Limestone Fillers Conserve Cement Part 1: An Anaysis Based on Powers’ Model.” https://www.researchgate.net/publication/234838632.

Bentz, Dale P., Ahmad Ardani, Tim Barrett, Scott Z. Jones, Didier Lootens, Max A. Peltz, Taijiro Sato, Paul E. Stutzman, Jussara Tanesi, and W. Jason Weiss. (2015). “Multi-Scale Investigation of the Performance of Limestone in Concrete.” Construction and Building Materials 75 (January): 1–10. https://doi.org/10.1016/j.conbuildmat.2014.10.042. DOI: https://doi.org/10.1016/j.conbuildmat.2014.10.042

Bertolini, Luca, Federica Lollini, and Elena Redaelli. (n.d.). “Experimental Data for the Application of Performance-Based Methods for the Design of Reinforced Concrete Structures Subjected to Carbonation.”

Bhandari, Ishan, Rajesh Kumar, A. Sofi, and Nikhil Sanjay Nighot. (2023). “A Systematic Study on Sustainable Low Carbon Cement – Superplasticizer Interaction: Fresh, Mechanical, Microstructural and Durability Characteristics.” Heliyon. Elsevier Ltd. https://doi.org/10.1016/j.heliyon.2023.e19176. DOI: https://doi.org/10.1016/j.heliyon.2023.e19176

Bharadwaj, Keshav, O. Burkan Isgor, and W. Jason Weiss. (2022). “Supplementary Cementitious Materials in Portland- Limestone Cements.” ACI Materials Journal 119 (2): 141–54. https://doi.org/10.14359/51734356. DOI: https://doi.org/10.14359/51734356

Bharadwaj, Keshav, O. Burkan Isgor, and W. Jason Weiss. (2024). “Optimizing the Carbon Footprint of Performance-Engineered Concrete Mixtures.” Transportation Research Record 2678 (10): 1422–40. https://doi.org/10.1177/03611981241236792. DOI: https://doi.org/10.1177/03611981241236792

Bizzozero, Julien, and Karen L. Scrivener. (2015). “Limestone Reaction in Calcium Aluminate Cement-Calcium Sulfate Systems.” Cement and Concrete Research 76 (June): 159–69. https://doi.org/10.1016/j.cemconres.2015.05.019. DOI: https://doi.org/10.1016/j.cemconres.2015.05.019

Bodard, Claude, and Marc Bergeron. (1990). “The Effect of Steam Curing on High-Early Strength Portland Cement Containing Carbonate Addition.” www.astm.org. DOI: https://doi.org/10.1520/STP23471S

Boel, V., K. Audenaert, G. de Schutter, G. Heirman, L. Vandewalle, B. Desmet, and J. Vantomme. (2007). “Transport Properties of Self Compacting Concrete with Limestone Filler or Fly Ash.” Materials and Structures/Materiaux et Constructions 40 (5): 507–16. https://doi.org/10.1617/s11527-006-9159-z. DOI: https://doi.org/10.1617/s11527-006-9159-z

Bonavetti, V., H. Donza, G. Menéndez, O. Cabrera, and E. F. Irassar. (2003). “Limestone Filler Cement in Low w/c Concrete: A Rational Use of Energy.” Cement and Concrete Research 33 (6): 865–71. https://doi.org/10.1016/S0008-8846(02)01087-6. DOI: https://doi.org/10.1016/S0008-8846(02)01087-6

Bonavetti, V., H. Donza, V. Rahhal, and E. Irassar. (2000). “Influence of Initial Curing on the Properties of Concrete Containing Limestone Blended Cement.” DOI: https://doi.org/10.1016/S0008-8846(00)00217-9

Bosiljkov, Violeta Bokan. (2003). “SCC Mixes with Poorly Graded Aggregate and High Volume of Limestone Filler.” Cement and Concrete Research 33 (9): 1279–86. https://doi.org/10.1016/S0008-8846(03)00013-9. DOI: https://doi.org/10.1016/S0008-8846(03)00013-9

Bouasker, M., P. Mounanga, P. Turcry, A. Loukili, and A. Khelidj. (2008). “Chemical Shrinkage of Cement Pastes and Mortars at Very Early Age: Effect of Limestone Filler and Granular Inclusions.” Cement and Concrete Composites 30 (1): 13–22. https://doi.org/10.1016/j.cemconcomp.2007.06.004. DOI: https://doi.org/10.1016/j.cemconcomp.2007.06.004

Bouasker, Marwen, Nour El Houda Khalifa, Pierre Mounanga, and Nabil ben Kahla. (2014). “Early-Age Deformation and Autogenous Cracking Risk of Slag-Limestone Filler-Cement Blended Binders.” Construction and Building Materials 55 (March): 158–67. https://doi.org/10.1016/j.conbuildmat.2014.01.037. DOI: https://doi.org/10.1016/j.conbuildmat.2014.01.037

Boubekeur, Toufik, Karim Ezziane, and El Hadj Kadri. (2014). “Estimation of Mortars Compressive Strength at Different Curing Temperature by the Maturity Method.” Computers and Chemical Engineering 71 (November): 299–307. https://doi.org/10.1016/j.conbuildmat.2014.08.084. DOI: https://doi.org/10.1016/j.conbuildmat.2014.08.084

Briki, Yosra, Maciej Zajac, Mohsen ben Haha, and Karen Scrivener. (2021). “Impact of Limestone Fineness on Cement Hydration at Early Age.” Cement and Concrete Research 147 (September). https://doi.org/10.1016/j.cemconres.2021.106515. DOI: https://doi.org/10.1016/j.cemconres.2021.106515

Bucher, Raphaël, Paco Diederich, Gilles Escadeillas, and Martin Cyr. (2017). “Service Life of Metakaolin-Based Concrete Exposed to Carbonation: Comparison with Blended Cement Containing Fly Ash, Blast Furnace Slag and Limestone Filler.” Cement and Concrete Research 99 (September): 18–29. https://doi.org/10.1016/j.cemconres.2017.04.013. DOI: https://doi.org/10.1016/j.cemconres.2017.04.013

Burgos-Montes, O., M. M. Alonso, and F. Puertas. (2013). “Viscosity and Water Demand of Limestone- and Fly Ash-Blended Cement Pastes in the Presence of Superplasticisers.” Construction and Building Materials 48: 417–23. https://doi.org/10.1016/j.conbuildmat.2013.07.008. DOI: https://doi.org/10.1016/j.conbuildmat.2013.07.008

Burgos-Montes, Olga, Marta Palacios, Patricia Rivilla, and Francisca Puertas. (2012). “Compatibility between Superplasticizer Admixtures and Cements with Mineral Additions.” Construction and Building Materials 31 (June): 300–309. https://doi.org/10.1016/j.conbuildmat.2011.12.092. DOI: https://doi.org/10.1016/j.conbuildmat.2011.12.092

Bundesanstalt für Wasserbau. (2012), BAW-Merkblatt Chlorideindringwiderstand von Beton. Karlsruhe: BAW.

Cam, Hieu T., and Narayanan Neithalath. (2010). "Moisture and Ionic Transport in Concretes Containing Coarse Limestone Powder." Cement and Concrete Composites, 32 (7), 486–96. https://doi.org/10.1016/j.cemconcomp.2010.04.002. DOI: https://doi.org/10.1016/j.cemconcomp.2010.04.002

Camiletti, J., A. M. Soliman, and M. L. Nehdi. (2013). "Effects of Nano- and Micro-Limestone Addition on Early-Age Properties of Ultra-High-Performance Concrete." Materials and Structures/Materiaux et Constructions, 46 (6), 881–98. https://doi.org/10.1617/s11527-012-9940-0. DOI: https://doi.org/10.1617/s11527-012-9940-0

Canadian Standards Association (CSA). (2003), CSA A3001: Cementitious Materials for Use in Concrete.

Carlos, Aquino, Inoue Masumi, Miura Hiroaki, Mizuta Maki, and Okamoto Takahisa. (2010). "The Effects of Limestone Aggregate on Concrete Properties." Construction and Building Materials, 24 (12), 2363–68. https://doi.org/10.1016/j.conbuildmat.2010.05.008. DOI: https://doi.org/10.1016/j.conbuildmat.2010.05.008

Carrasco, M. F., G. Menéndez, V. Bonavetti, and E. F. Irassar. (2005). "Strength Optimization of 'Tailor-Made Cement' with Limestone Filler and Blast Furnace Slag." Cement and Concrete Research, 35 (7), 1324–31. https://doi.org/10.1016/j.cemconres.2004.09.023. DOI: https://doi.org/10.1016/j.cemconres.2004.09.023

Catinaud, S., J. J. Beaudoin, and J. Marchand. (2000). "Influence of Limestone Addition on Calcium Leaching Mechanisms in Cement-Based Materials." DOI: https://doi.org/10.1016/S0008-8846(00)00385-9

Celik, K., M. D. Jackson, M. Mancio, C. Meral, A. H. Emwas, P. K. Mehta, and P. J. M. Monteiro. (2014). "High-Volume Natural Volcanic Pozzolan and Limestone Powder as Partial Replacements for Portland Cement in Self-Compacting and Sustainable Concrete." Cement and Concrete Composites, 45, 136–47. https://doi.org/10.1016/j.cemconcomp.2013.09.003. DOI: https://doi.org/10.1016/j.cemconcomp.2013.09.003

Celik, Kemal. (2015). "Development and Characterization of Sustainable Self-Consolidating Concrete Containing High Volume of Limestone Powder and Natural or Calcined Pozzolanic Materials."

Celik, Kemal, Cagla Meral, Mauricio Mancio, P. Kumar Mehta, and Paulo J. M. Monteiro. (2014). "A Comparative Study of Self-Consolidating Concretes Incorporating High-Volume Natural Pozzolan or High-Volume Fly Ash." Construction and Building Materials, 67, 14–19. https://doi.org/10.1016/j.conbuildmat.2013.11.065. DOI: https://doi.org/10.1016/j.conbuildmat.2013.11.065

Celik, Kemal, Cagla Meral, A. Petek Gursel, P. Kumar Mehta, Arpad Horvath, and Paulo J. M. Monteiro. (2015). "Mechanical Properties, Durability, and Life-Cycle Assessment of Self-Consolidating Concrete Mixtures Made with Blended Portland Cements Containing Fly Ash and Limestone Powder." Cement and Concrete Composites, 56, 59–72. https://doi.org/10.1016/j.cemconcomp.2014.11.003. DOI: https://doi.org/10.1016/j.cemconcomp.2014.11.003

Chen, Chun Tao, Jiang Jhy Chang, Wei Chung Yeih, and Shun Ting Chang. (2012). "Sustainable Performance of Limestone Cement." In Advanced Materials Research, 476–478, 1692–96. https://doi.org/10.4028/www.scientific.net/AMR.476-478.1692. DOI: https://doi.org/10.4028/www.scientific.net/AMR.476-478.1692

Chen, J. J., A. K. H. Kwan, and Y. Jiang. (2014). "Adding Limestone Fines as Cement Paste Replacement to Reduce Water Permeability and Sorptivity of Concrete." Construction and Building Materials, 56 (April), 87–93. https://doi.org/10.1016/j.conbuildmat.2014.01.066. DOI: https://doi.org/10.1016/j.conbuildmat.2014.01.066

Chen, J. J., Hong, S., & Glasser, F. P. (2021). Decalcification of CSH: Mechanisms and consequences. Cement and Concrete Research, 147, 106511. https://doi.org/10.1016/j.conbuildmat.2022.127988 DOI: https://doi.org/10.1016/j.conbuildmat.2022.127988

Chiker, T., S. Aggoun, H. Houari, and R. Siddique. (2016). "Sodium Sulfate and Alternative Combined Sulfate/Chloride Action on Ordinary and Self-Consolidating PLC-Based Concretes." Construction and Building Materials, 106 (March), 342–48. https://doi.org/10.1016/j.conbuildmat.2015.12.123. DOI: https://doi.org/10.1016/j.conbuildmat.2015.12.123

Chung, Hung Wen, Harvey DeFord, Mang Tia, and Frank Mi Way Ni. (2023). "Developing Sustainable Pavement Concrete Mix Using Portland Limestone Cement and Blended Aggregates Techniques." Transportation Research Record, 2677 (7), 209–21. https://doi.org/10.1177/03611981231152244. DOI: https://doi.org/10.1177/03611981231152244

Cooper, Michelle, and Robert Spragg. (2023). "Portland Limestone Cement FHWA Publication No.: FHWA-HRT-23-104 FHWA Contact." https://highways.dot.gov/research.

Cost, V., Isaac Howard, and Jay Shannon. (2013). "Improving Concrete Sustainability and Performance with Use of Portland-Limestone Cement Synergies." Transportation Research Record, (2342), 26–34. https://doi.org/10.3141/2342-04. DOI: https://doi.org/10.3141/2342-04

Courard, Luc, and Frédéric Michel. (2014). "Limestone Fillers Cement Based Composites: Effects of Blast Furnace Slags on Fresh and Hardened Properties." Construction and Building Materials, 51 (January), 439–45. https://doi.org/10.1016/j.conbuildmat.2013.10.076. DOI: https://doi.org/10.1016/j.conbuildmat.2013.10.076

Courard, Luc, Frédéric Michel, L. Courard, R. Degeimbre, A. Darimont, X. Willem, F. Michel, S. Flamant, and Stéphanie Flamant. (2005). "Some Effects of Limestone Fillers as a Partial Substitute for Cement in Mortar Composition." https://www.researchgate.net/publication/267830988.

Courard, Luc, Frédéric Michel, Sylwia Perkowicz, and Andrzej Garbacz. (2014). "Effects of Limestone Fillers on Surface Free Energy and Electrical Conductivity of the Interstitial Solution of Cement Mixes." Cement and Concrete Composites, 45, 111–16. https://doi.org/10.1016/j.cemconcomp.2013.09.014. DOI: https://doi.org/10.1016/j.cemconcomp.2013.09.014

Craeye, B., G. De Schutter, B. Desmet, J. Vantomme, G. Heirman, L. Vandewalle, Ö. Cizer, S. Aggoun, and E. H. Kadri. (2010). "Effect of Mineral Filler Type on Autogenous Shrinkage of Self-Compacting Concrete." Cement and Concrete Research, 40 (6), 908–13. https://doi.org/10.1016/j.cemconres.2010.01.014. DOI: https://doi.org/10.1016/j.cemconres.2010.01.014

Crundwell, F. K., Higgins, D., Crundwell, G., & Lea, F. M. (2019). Lea’s Chemistry of Cement and Concrete (5th ed.). Oxford: Butterworth-Heinemann.

D Tennis, P., M. D. A. Thomas, and W. J. Weiss. (2011). "State-of-the-Art Report on Use of Limestone in Cements at Levels of up to 15%."

Darweesh, H. H. M. (2004). "Limestone as an Accelerator and Filler in Limestone-Substituted Alumina Cement." Ceramics International, 30 (2), 145–50. https://doi.org/10.1016/S0272-8842(03)00073-7. DOI: https://doi.org/10.1016/S0272-8842(03)00073-7

Dave, Niragi, Anil Kumar Misra, Amit Srivastava, and Surendra Kumar Kaushik. (2016). "Experimental Analysis of Strength and Durability Properties of Quaternary Cement Binder and Mortar." Construction and Building Materials, 107 (March), 117–24. https://doi.org/10.1016/j.conbuildmat.2015.12.195. DOI: https://doi.org/10.1016/j.conbuildmat.2015.12.195

Da Silva, P.R., De Brito, J. (2016), “Durability performance of self-compacting concrete (SCC) with binary and ternary mixes of fly ash and limestone filler,” Materials and Structures, V.49, pp. 2749-2766.

De Weerdt, K., Ben Haha, M., Le Saout, G., Kjellsen, K.O., Justnes, H., Lothenbach, B. (2011). Hydration mechanisms of ternary Portland cements containing limestone powder and fly ash. Cement and Concrete Research, 41(3), 279-291. https://doi.org/10.1016/j.cemconres.2010.11.014 DOI: https://doi.org/10.1016/j.cemconres.2010.11.014

Dhir, R. K., M. C. Limbachiya, M. J. McCarthy, and A. Chaipanich. (2007). "Evaluation of Portland Limestone Cements for Use in Concrete Construction." Materials and Structures/Materiaux et Constructions, 40 (5), 459–73. https://doi.org/10.1617/s11527-006-9143-7. DOI: https://doi.org/10.1617/s11527-006-9143-7

Diab, Ahmed M., Abd Elmoaty M. Abd Elmoaty, and Ayman A. Aly. (2016). "Long Term Study of Mechanical Properties, Durability and Environmental Impact of Limestone Cement Concrete." Alexandria Engineering Journal, 55 (2), 1465–82. https://doi.org/10.1016/j.aej.2016.01.031. DOI: https://doi.org/10.1016/j.aej.2016.01.031

Diab, Ahmed M., Ismail A. Mohamed, and Ali A. Aliabdo. (2016). "Impact of Organic Carbon on Hardened Properties and Durability of Limestone Cement Concrete." Construction and Building Materials, 102 (January), 688–98. https://doi.org/10.1016/j.conbuildmat.2015.10.182. DOI: https://doi.org/10.1016/j.conbuildmat.2015.10.182

Diamantonis, N., I. Marinos, M. S. Katsiotis, A. Sakellariou, A. Papathanasiou, V. Kaloidas, and M. Katsioti. (2010). "Investigations about the Influence of Fine Additives on the Viscosity of Cement Paste for Self-Compacting Concrete." Construction and Building Materials, 24 (8), 1518–22. https://doi.org/10.1016/j.conbuildmat.2010.02.005. DOI: https://doi.org/10.1016/j.conbuildmat.2010.02.005

Dogan, U. Anil, and M. Hulusi Ozkul. (2015). "The Effect of Cement Type on Long-Term Transport Properties of Self-Compacting Concretes." Construction and Building Materials, 96 (August), 641–47. https://doi.org/10.1016/j.conbuildmat.2015.08.097. DOI: https://doi.org/10.1016/j.conbuildmat.2015.08.097

Douglas Hooton, R., P. Klieger, and R. D. Hooton. (1990). "Effects of Carbonate Additions on Heat of Hydration and Sulfate Resistance of Portland Cements 'Effects of Carbonate Additions on Heat of Hydration and Sulfate Resistance of Portland Cements,' Carbonate Additions to Cement, ASTM STP 1064." www.astm.org. DOI: https://doi.org/10.1520/STP23473S

Drouet, Emeline, Stéphane Poyet, Patrick Le Bescop, Jean Michel Torrenti, and Xavier Bourbon. (2019). "Carbonation of Hardened Cement Pastes: Influence of Temperature." Cement and Concrete Research, 115 (January), 445–59. https://doi.org/10.1016/j.cemconres.2018.09.019. DOI: https://doi.org/10.1016/j.cemconres.2018.09.019

El-Didamony, Hamdy, Thanaa Salem, Nazek Gabr, and Taher Mohamed. (1994). " Limestone as a retarder ai{d filler in limestone blended cement."

Elgalhud, Abdurrahman A., Ravindra K. Dhir, and Gurmel Ghataora. (2016). "Limestone Addition Effects on Concrete Porosity." Cement and Concrete Composites, 72 (September), 222–34. https://doi.org/10.1016/j.cemconcomp.2016.06.006. DOI: https://doi.org/10.1016/j.cemconcomp.2016.06.006

Elgalhud, Abdurrahman A., Ravindra K. Dhir, and Gurmel Ghataora. (2018). "Chloride Ingress in Concrete: Limestone Addition Effects." Magazine of Concrete Research, 70 (6), 292–313. https://doi.org/10.1680/jmacr.17.00177. DOI: https://doi.org/10.1680/jmacr.17.00177

El-Hassan, Hilal, and Yixin Shao. (2015). "Early Carbonation Curing of Concrete Masonry Units with Portland Limestone Cement." Cement and Concrete Composites, 62 (August), 168–77. https://doi.org/10.1016/j.cemconcomp.2015.07.004. DOI: https://doi.org/10.1016/j.cemconcomp.2015.07.004

Elkhadiri, I., A. Diouri, A. Boukhari, J. Aride, and F. Puertas. (2002). "Mechanical Behaviour of Various Mortars Made by Combined Fly Ash and Limestone in Moroccan Portland Cement. DOI: https://doi.org/10.1016/S0008-8846(02)00834-7

European Committee for Standardization. (2018). Testing hardened concrete – Part 10: Determination of the relative carbonation resistance of concrete (EN 12390-10:2018). CEN.

Fanghui, Han, Wang Qiang, Liu Mutian, and Mei Yingjun. (2016). "Early Hydration Properties of Composite Binder Containing Limestone Powder with Different Finenesses." Journal of Thermal Analysis and Calorimetry, 123 (2), 1141–51. https://doi.org/10.1007/s10973-015-5088-9. DOI: https://doi.org/10.1007/s10973-015-5088-9

Felekoǧlu, B., and K. Tosun. (2009). "A Comparative Study on the Performance of Limestone-Blended Cement Mortars Exposed to Cold Curing Conditions." Advances in Cement Research, 21 (2), 45–57. https://doi.org/10.1680/adcr.2008.00003. DOI: https://doi.org/10.1680/adcr.2008.00003

Felekoǧlu, Burak, Kamile Tosun, Bülent Baradan, Akin Altun, and Bahadir Uyulgan. (2006). "The Effect of Fly Ash and Limestone Fillers on the Viscosity and Compressive Strength of Self-Compacting Repair Mortars." Cement and Concrete Research, 36 (9), 1719–26. https://doi.org/10.1016/j.cemconres.2006.04.002. DOI: https://doi.org/10.1016/j.cemconres.2006.04.002

Ferreiro, S., D. Herfort, and J. S. Damtoft. (2017). "Effect of Raw Clay Type, Fineness, Water-to-Cement Ratio and Fly Ash Addition on Workability and Strength Performance of Calcined Clay – Limestone Portland Cements." Cement and Concrete Research, 101 (November), 1–12. https://doi.org/10.1016/j.cemconres.2017.08.003. DOI: https://doi.org/10.1016/j.cemconres.2017.08.003

Gao, Yun, Geert de Schutter, Guang Ye, Zhuqing Yu, Zhijun Tan, and Kai Wu. (2013). "A Microscopic Study on Ternary Blended Cement Based Composites." Construction and Building Materials, 46, 28–38. https://doi.org/10.1016/j.conbuildmat.2013.04.021. DOI: https://doi.org/10.1016/j.conbuildmat.2013.04.021

Garcia, Jose E., Nicolas B. Tiburzi, Kevin J. Folliard, and Thanos Drimalas. (2022). "Mechanical Properties and Electrical Resistivity of Portland Limestone Cement Concrete Systems Containing Greater than 15% Limestone and Supplementary Cementitious Materials." Cement, 8 (June), 100026. https://doi.org/10.1016/j.cement.2022.100026. DOI: https://doi.org/10.1016/j.cement.2022.100026

Gesoǧlu, Mehmet, Erhan Güneyisi, Mustafa E. Kocabaǧ, Veysel Bayram, and Kasim Mermerdaş. (2012). "Fresh and Hardened Characteristics of Self Compacting Concretes Made with Combined Use of Marble Powder, Limestone Filler, and Fly Ash." Construction and Building Materials, 37 (December), 160–70. https://doi.org/10.1016/j.conbuildmat.2012.07.092. DOI: https://doi.org/10.1016/j.conbuildmat.2012.07.092

Ghafoori, Nader, Rebecca Spitek, and Meysam Najimi. (2016). "Influence of Limestone Size and Content on Transport Properties of Self-Consolidating Concrete." Construction and Building Materials, 127 (November), 588–95. https://doi.org/10.1016/j.conbuildmat.2016.10.051. DOI: https://doi.org/10.1016/j.conbuildmat.2016.10.051

Ghiasvand, E., A. A. Ramezanianpour, and A. M. Ramezanianpour. (2015). "Influence of Grinding Method and Particle Size Distribution on the Properties of Portland-Limestone Cements." Materials and Structures/Materiaux et Constructions, 48 (5), 1273–83. https://doi.org/10.1617/s11527-013-0232-0. DOI: https://doi.org/10.1617/s11527-013-0232-0

Ghrici, M., S. Kenai, and M. Said-Mansour. (2007). "Mechanical Properties and Durability of Mortar and Concrete Containing Natural Pozzolana and Limestone Blended Cements." Cement and Concrete Composites, 29 (7), 542–49. https://doi.org/10.1016/j.cemconcomp.2007.04.009. DOI: https://doi.org/10.1016/j.cemconcomp.2007.04.009

Githachuri, Kung’u, and Mark G. Alexander. (2013). "Durability Performance Potential and Strength of Blended Portland Limestone Cement Concrete." Cement and Concrete Composites, 39, 115–21. https://doi.org/10.1016/j.cemconcomp.2013.03.027. DOI: https://doi.org/10.1016/j.cemconcomp.2013.03.027

Gołaszewski, Jacek, Małgorzata Gołaszewska, and Grzegorz Cygan. (2022). "Performance of Ordinary and Self-Compacting Concrete with Limestone after Freeze–Thaw Cycles." Buildings, 12 (11). https://doi.org/10.3390/buildings12112003. DOI: https://doi.org/10.3390/buildings12112003

Gonnon, Pascal, and Didier Lootens. (2023). "A Model Linking Compressive Strength and Porosity in Ternary System: Metakaolin, Limestone, Cement." Minerals, 13 (4). https://doi.org/10.3390/min13040454. DOI: https://doi.org/10.3390/min13040454

González, M. A., and E. F. Irassar. (1998). "Effect of limestone filler on the sulfate resistance of low c 3 a portland cement." Cement and Concrete Research, p. 11. DOI: https://doi.org/10.1016/S0008-8846(98)00144-6

Guemmadi, Z’hor, Musa Resheidat, Hacéne Houari, and Belkacem Toumi. (2008). "Optimal Criteria of Algerian Blended Cement Using Limestone Fines." Journal of Civil Engineering and Management, 14 (4), 269–75. https://doi.org/10.3846/1392-3730.2008.14.26. DOI: https://doi.org/10.3846/1392-3730.2008.14.26

Güneyisi, Erhan, and Mehmet Gesoğlu. (2011). "Properties of Self-Compacting Portland Pozzolana and Limestone Blended Cement Concretes Containing Different Replacement Levels of Slag." Materials and Structures/Materiaux et Constructions, 44 (8), 1399–1410. https://doi.org/10.1617/s11527-011-9706-0. DOI: https://doi.org/10.1617/s11527-011-9706-0

Güneyisi, Erhan, Turan Özturan, and Mehmet Gesoǧlu. (2005). "A Study on Reinforcement Corrosion and Related Properties of Plain and Blended Cement Concretes under Different Curing Conditions." Cement and Concrete Composites, 27 (4), 449–61. https://doi.org/10.1016/j.cemconcomp.2004.05.006. DOI: https://doi.org/10.1016/j.cemconcomp.2004.05.006

Güneyisi, Erhan, Turan Özturan, and Mehmet Gesoǧlu. (2007). "Effect of Initial Curing on Chloride Ingress and Corrosion Resistance Characteristics of Concretes Made with Plain and Blended Cements." Building and Environment, 42 (7), 2676–85. https://doi.org/10.1016/j.buildenv.2006.07.008. DOI: https://doi.org/10.1016/j.buildenv.2006.07.008

Harmandeep, S., and S. Lovneesh. (2023). "Effect of Limestone Waste Powder and Marble Waste over the Strength Properties of the Conventional Concrete." In IOP Conference Series: Earth and Environmental Science, Vol. 1110. Institute of Physics. https://doi.org/10.1088/1755-1315/1110/1/012077. DOI: https://doi.org/10.1088/1755-1315/1110/1/012077

Hartshorn, S. A., J. H. Sharp, and R. N. Swamy. (1999). "Thaumasite Formation in Portland-Limestone Cement Pastes." Cement and Concrete Research, Vol. 29. DOI: https://doi.org/10.1016/S0008-8846(99)00100-3

Hartshorn, S. A., J. H. Sharp, and R. N. Swamy. (2002). "The Thaumasite Form of Sulfate Attack in Portland-Limestone Cement Mortars Stored in Magnesium Sulfate Solution." www.elsevier.com/locate/cemconcomp. DOI: https://doi.org/10.1016/S0958-9465(01)00087-7

Heikal, M, H El-Didamony, and M. S. Morsy. (2000). “Limestone-Filled Pozzolanic Cement.” Cement and Concrete Research 30 DOI: https://doi.org/10.1016/S0008-8846(00)00402-6

Heikal, Mohamed, Hamdy Eldidamony, and Fawzia Abd EL-Raoof. (2014). “Electrical Properties, Physico-Chemical and Mechanical Characteristics of Fly Ash-Limestone-Filled Pozzolanic Cement.” https://www.researchgate.net/publication/258819705.

Heirman, G., R. Hendrickx, L. Vandewalle, D. van Gemert, D. Feys, G. de Schutter, B. Desmet, and J. Vantomme. (2009). “Integration Approach of the Couette Inverse Problem of Powder Type Self-Compacting Concrete in a Wide-Gap Concentric Cylinder Rheometer. Part II. Influence of Mineral Additions and Chemical Admixtures on the Shear Thickening Flow Behaviour.” Cement and Concrete Research 39 (3): 171–81. https://doi.org/10.1016/j.cemconres.2008.12.006. DOI: https://doi.org/10.1016/j.cemconres.2008.12.006

Heirman, G., L. Vandewalle, D. van Gemert, V. Boel, K. Audenaert, G. de Schutter, B. Desmet, and J. Vantomme. (2008). “Time-Dependent Deformations of Limestone Powder Type Self-Compacting Concrete.” Engineering Structures 30 (10): 2945–56. https://doi.org/10.1016/j.engstruct.2008.04.009. DOI: https://doi.org/10.1016/j.engstruct.2008.04.009

Helal, M. A. (2002). “Effect of Curing Time on the Physico-Mechanical Characteristics of the Hardened Cement Pastes Containing Limestone.” Cement and Concrete Research 32 (3): 447–50. https://doi.org/10.1016/S0008-8846(01)00700-1. DOI: https://doi.org/10.1016/S0008-8846(01)00700-1

Hooton, Doug, and Michelle Nokken. (2007). “Portland-Limestone Cement: State-of-the-Art Report and Gap Analysis For CSA A 3000.” https://www.researchgate.net/publication/242297652.

Hornain, H., J. Marchand, V. Duhot, and M. Moranville-Regourd. (1995). “Diffusion of Chloride Ions in Limestone Filler Blended Cement Pastes and Mortars.” Cement and Concrete Research 25 (8): 1667–78. https://doi.org/10.1016/0008-8846(95)00163-8. DOI: https://doi.org/10.1016/0008-8846(95)00163-8

Houst, Y.F. and Wittmann, F.H. (2002) Depth Profiles of Carbonates Formed during Natural Carbonation. Cement and Concrete Research, 32, 1923-1930. https://doi.org/10.1016/S0008-8846(02)00908-0 DOI: https://doi.org/10.1016/S0008-8846(02)00908-0

Hu, Yueyang, Weifeng Li, Suhua Ma, Qianqian Wang, Huiru Zou, and Xiaodong Shen. (2018). “The Composition and Performance of Alite-Ye’elimite Clinker Produced at 1300 °C.” Cement and Concrete Research 107 (May): 41–48. https://doi.org/10.1016/j.cemconres.2018.02.009. DOI: https://doi.org/10.1016/j.cemconres.2018.02.009

Huang, Wei, Hadi Kazemi-Kamyab, Wei Sun, and Karen Scrivener. (2017). “Effect of Cement Substitution by Limestone on the Hydration and Microstructural Development of Ultra-High Performance Concrete (UHPC).” Cement and Concrete Composites 77 (March): 86–101. https://doi.org/10.1016/j.cemconcomp.2016.12.009. DOI: https://doi.org/10.1016/j.cemconcomp.2016.12.009

Hussain, Kinaanath, Pongsak Choktaweekarn, Warangkana Saengsoy, Theerati Srichan, and Somnuk Tangtermsirikul. (2013). “Effect of Cement Types, Mineral Admixtures, and Bottom Ash on the Curing Sensitivity of Concrete.” International Journal of Minerals, Metallurgy and Materials 20 (1): 94–105. https://doi.org/10.1007/s12613-013-0699-2. DOI: https://doi.org/10.1007/s12613-013-0699-2

Ingram, Kevin D., and Kenneth E. Daugherty. (1991). “A Review of Limestone Additions to Portland Cement and Concrete.” Cement & Concrete Composites. Vol. 13. DOI: https://doi.org/10.1016/0958-9465(91)90016-B

Irassar, E. F. (2009). “Sulfate Attack on Cementitious Materials Containing Limestone Filler - A Review.” Cement and Concrete Research. https://doi.org/10.1016/j.cemconres.2008.11.007. DOI: https://doi.org/10.1016/j.cemconres.2008.11.007

Irassar, E. F., V. L. Bonavetti, G. Menéndez, H. Donza, and M. F. Carrasco. (2006). “Durability of Ternary Blended Cements Containing Limestone Filler and GBFS.” ACI Special Publication. Vol. 234.

Itim, Ahmed, Karim Ezziane, and El Hadj Kadri. (2011). “Compressive Strength and Shrinkage of Mortar Containing Various Amounts of Mineral Additions.” Construction and Building Materials 25 (8): 3603–9. https://doi.org/10.1016/j.conbuildmat.2011.03.055. DOI: https://doi.org/10.1016/j.conbuildmat.2011.03.055

Jiang, Chao, and Xianglin Gu. (2016). “Discussion of ‘Assessing Concrete Carbonation Resistance through Air Permeability Measurements’ by R. Neves et al. [Construction and Building Materials 82(2015): 304-309].” Construction and Building Materials. https://doi.org/10.1016/j.conbuildmat.2015.07.168. DOI: https://doi.org/10.1016/j.conbuildmat.2015.07.168

Jin, Weizhun, Xiaodan Tang, Zhipeng Bai, Hu Yang, Zhiyou Chen, Lei Wang, Lei Zhang, and Linhua Jiang. (2024). “Effect of Curing Temperature on Mechanical Strength and Thermal Properties of Hydraulic Limestone Powder Concrete.” Journal of Materials Engineering and Performance 33 (20): 11214–30. https://doi.org/10.1007/s11665-023-08766-9. DOI: https://doi.org/10.1007/s11665-023-08766-9

Justnes, Harald. (2003). “Thaumasite Formed by Sulfate Attack on Mortar with Limestone Filler.” In Cement and Concrete Composites, 25:955–59. https://doi.org/10.1016/S0958-9465(03)00120-3. DOI: https://doi.org/10.1016/S0958-9465(03)00120-3

Kakali, G., S. Tsivilis, E. Aggeli, and M. Bati. (2000). “Hydration Products of C3A, C3S and Portland Cement in the Presence of CaCO3.” Cement and Concrete Research 30 (7): 1073–77. https://doi.org/10.1016/S0008-8846(00)00292-1. DOI: https://doi.org/10.1016/S0008-8846(00)00292-1

Kathirvel, P., V. Saraswathy, S. P. Karthik, and A. S. S. Sekar. (2013). “Strength and Durability Properties of Quaternary Cement Concrete Made with Fly Ash, Rice Husk Ash and Limestone Powder.” Arabian Journal for Science and Engineering 38 (3): 589–98. https://doi.org/10.1007/s13369-012-0331-1. DOI: https://doi.org/10.1007/s13369-012-0331-1

Katsioti, M., D. Gkanis, P. Pipilikaki, A. Sakellariou, A. Papathanasiou, Ch. Teas, E. Chaniotakis, P. Moundoulas, and A. Moropoulou. (2009). “Study of the Substitution of Limestone Filler with Pozzolanic Additives in Mortars.” Construction and Building Materials 23 (5): 1960–65. https://doi.org/10.1016/j.conbuildmat.2008.08.034. DOI: https://doi.org/10.1016/j.conbuildmat.2008.08.034

Kenai, Said, Wolé Soboyejo, and Alfred Soboyejo. (2004). “Some Engineering Properties of Limestone Concrete.” In Materials and Manufacturing Processes, 19:949–61. https://doi.org/10.1081/AMP-200030668. DOI: https://doi.org/10.1081/AMP-200030668

Khokhar, M. I. A., E. Roziere, P. Turcry, F. Grondin, and A. Loukili. (2010). “Mix Design of Concrete with High Content of Mineral Additions: Optimisation to Improve Early Age Strength.” Cement and Concrete Composites 32 (5): 377–85. https://doi.org/10.1016/j.cemconcomp.2010.01.006. DOI: https://doi.org/10.1016/j.cemconcomp.2010.01.006

Kijjanon, A., T. Sumranwanich, W. Saengsoy, and S. Tangtermsirikul. (2024). “Sodium Sulfate and Magnesium Sulfate Resistances of Mortar with Multi-Binder Systems of Calcined Kaolinite Clay, Fly Ash, and Limestone Powder.” Journal of Sustainable Cement-Based Materials 13 (7): 1015–31. https://doi.org/10.1080/21650373.2024.2346886. DOI: https://doi.org/10.1080/21650373.2024.2346886

Klemm, Waldemar A., and Lawrence D. Adams. (1990). “An Investigation of the Formation of Carboaluminates.” www.astm.org. DOI: https://doi.org/10.1520/STP23472S

Klinger, James, Joseph F. Neuber, Jeffrey Ondo, and Bruce A. Suprenant. (2024). “Minimizing the Risk for Portland-Limestone Cement Concrete Slabs Best Practices and Strategies to Reduce Floor Slab Finishing and Early-Age, Strength-Critical Challenges.” www.concreteinternational.com|Ci|JANUARY202433.

Król, Anna, Zbigniew Giergiczny, and Justyna Kuterasinska-Warwas. (2020). “Properties of Concrete Made with Low-Emission Cements CEM II/C-M and CEM VI.” Materials 13 (10). https://doi.org/10.3390/ma13102257. DOI: https://doi.org/10.3390/ma13102257

Krstulović, P., N. Kamenk, and K. Popović. (1994). “A New Approach in Evaluation of Filler Effect in Cement: Effect on Strength and Workability of Mortar and Concrete.” Cement and Concrete Research. Vol. 24. DOI: https://doi.org/10.1016/0008-8846(94)90197-X

Kumar, Aditya, Tandre Oey, Seohyun Kim, Davis Thomas, Sondos Badran, Jialin Li, Fabio Fernandes, Narayanan Neithalath, and Gaurav Sant. (2013). “Simple Methods to Estimate the Influence of Limestone Fillers on Reaction and Property Evolution in Cementitious Materials.” Cement and Concrete Composites 42: 20–29. https://doi.org/10.1016/j.cemconcomp.2013.05.002. DOI: https://doi.org/10.1016/j.cemconcomp.2013.05.002

Kuosa, H., R. M. Ferreira, E. Holt, M. Leivo, and E. Vesikari. (2014). “Effect of Coupled Deterioration by Freeze-Thaw, Carbonation and Chlorides on Concrete Service Life.” Cement and Concrete Composites 47 (March): 32–40. https://doi.org/10.1016/j.cemconcomp.2013.10.008. DOI: https://doi.org/10.1016/j.cemconcomp.2013.10.008

Kuosa, Hannele. (2007). “Concrete Durability Field Testing in DuraInt-Project.” Research Report VIT

Lawrence, Philippe, Martin Cyr, and Erick Ringot. (2005). "Mineral Admixtures in Mortars Effect of Type, Amount and Fineness of Fine Constituents on Compressive Strength." Cement and Concrete Research 35 (6): 1092–1105. https://doi.org/10.1016/j.cemconres.2004.07.004. DOI: https://doi.org/10.1016/j.cemconres.2004.07.004

Lee, Seung Tae, Robert Doug Hooton, Ho Seop Jung, Du Hee Park, and Chang Sik Choi. (2008). "Effect of Limestone Filler on the Deterioration of Mortars and Pastes Exposed to Sulfate Solutions at Ambient Temperature." Cement and Concrete Research 38 (1): 68–76. https://doi.org/10.1016/j.cemconres.2007.08.003. DOI: https://doi.org/10.1016/j.cemconres.2007.08.003

Leemann, Andreas, Roman Loser, and Beat Münch. (2010). "Influence of Cement Type on ITZ Porosity and Chloride Resistance of Self-Compacting Concrete." Cement and Concrete Composites 32 (2): 116–20. https://doi.org/10.1016/j.cemconcomp.2009.11.007. DOI: https://doi.org/10.1016/j.cemconcomp.2009.11.007

Leemann, Andreas, Peter Nygaard, Josef Kaufmann, and Roman Loser. (2015). "Relation between Carbonation Resistance, Mix Design and Exposure of Mortar and Concrete." Cement and Concrete Composites 62 (July): 33–43. https://doi.org/10.1016/j.cemconcomp.2015.04.020. DOI: https://doi.org/10.1016/j.cemconcomp.2015.04.020

Li, Beixing, Jiliang Wang, and Mingkai Zhou. (2009). "Effect of Limestone Fines Content in Manufactured Sand on Durability of Low- and High-Strength Concretes." Construction and Building Materials 23 (8): 2846–50. https://doi.org/10.1016/j.conbuildmat.2009.02.033. DOI: https://doi.org/10.1016/j.conbuildmat.2009.02.033

Li, Chenzhi. (2022). "Relationship between Water Absorption and Porosity in Concrete with Limestone Powder Addition." Structural Concrete 23 (5): 3284–93. https://doi.org/10.1002/suco.202100546. DOI: https://doi.org/10.1002/suco.202100546

Li, Chenzhi, Linhua Jiang, and Shanshan Li. (2020). "Effect of Limestone Powder Addition on Threshold Chloride Concentration for Steel Corrosion in Reinforced Concrete." Cement and Concrete Research 131 (May). https://doi.org/10.1016/j.cemconres.2020.106018. DOI: https://doi.org/10.1016/j.cemconres.2020.106018

Li, Jiaqi, Wenxin Zhang, Chen Li, and Paulo J.M. Monteiro. (2019). "Green Concrete Containing Diatomaceous Earth and Limestone: Workability, Mechanical Properties, and Life-Cycle Assessment." Journal of Cleaner Production 223 (June): 662–79. https://doi.org/10.1016/j.jclepro.2019.03.077. DOI: https://doi.org/10.1016/j.jclepro.2019.03.077

Li, Leo G., and Albert K.H. Kwan. (2015). "Adding Limestone Fines as Cementitious Paste Replacement to Improve Tensile Strength, Stiffness and Durability of Concrete." Cement and Concrete Composites 60 (July): 17–24. https://doi.org/10.1016/j.cemconcomp.2015.02.006. DOI: https://doi.org/10.1016/j.cemconcomp.2015.02.006

Li, P. P., H. J.H. Brouwers, W. Chen, and Qingliang Yu. (2020). "Optimization and Characterization of High-Volume Limestone Powder in Sustainable Ultra-High Performance Concrete." Construction and Building Materials 242 (May). https://doi.org/10.1016/j.conbuildmat.2020.118112. DOI: https://doi.org/10.1016/j.conbuildmat.2020.118112

Liu, Kuisheng, and Yong Cui. (2021). "Effects of Different Content of Phosphorus Slag Composite Concrete: Heat Evolution, Sulphate-Corrosion Resistance and Volume Deformation." Crystals 11 (11). https://doi.org/10.3390/cryst11111293. DOI: https://doi.org/10.3390/cryst11111293

Liu, Shuhua, Zhiyang Gao, and Meijuan Rao. (2011). "Study on the Ultra High Performance Concrete Containing Limestone Powder." In Advanced Materials Research, 250–253: 686–89. https://doi.org/10.4028/www.scientific.net/AMR.250-253.686. DOI: https://doi.org/10.4028/www.scientific.net/AMR.250-253.686

Liu, Shuhua, and Peiyu Yan. (2010). "Effect of Limestone Powder on Microstructure of Concrete." Journal Wuhan University of Technology, Materials Science Edition 25 (2): 328–31. https://doi.org/10.1007/s11595-010-2328-5. DOI: https://doi.org/10.1007/s11595-010-2328-5

L.L. Mayfield. (1988). "Limestone Additions to Portland Cement-An Old Controversy Revisited." DOI: https://doi.org/10.1520/CCA10024J

Lollini, Federica, Elena Redaelli, and Luca Bertolini. (2014). "Effects of Portland Cement Replacement with Limestone on the Properties of Hardened Concrete." Cement and Concrete Composites 46 (February): 32–40. https://doi.org/10.1016/j.cemconcomp.2013.10.016. DOI: https://doi.org/10.1016/j.cemconcomp.2013.10.016

Lollini, Federica, Elena Redaelli, and Luca Bertolini.. (2016). "Investigation on the Effect of Supplementary Cementitious Materials on the Critical Chloride Threshold of Steel in Concrete." Materials and Structures/Materiaux et Constructions 49 (10): 4147–65. https://doi.org/10.1617/s11527-015-0778-0. DOI: https://doi.org/10.1617/s11527-015-0778-0

Loser, R., and A. Leemann. (2009). "Shrinkage and Restrained Shrinkage Cracking of Self-Compacting Concrete Compared to Conventionally Vibrated Concrete." Materials and Structures/Materiaux et Constructions 42 (1): 71–82. https://doi.org/10.1617/s11527-008-9367-9. DOI: https://doi.org/10.1617/s11527-008-9367-9

Loser, Roman, Barbara Lothenbach, Andreas Leemann, and Martin Tuchschmid. (2010). "Chloride Resistance of Concrete and Its Binding Capacity - Comparison between Experimental Results and Thermodynamic Modeling." Cement and Concrete Composites 32 (1): 34–42. https://doi.org/10.1016/j.cemconcomp.2009.08.001. DOI: https://doi.org/10.1016/j.cemconcomp.2009.08.001

Lothenbach, Barbara, Gwenn le Saout, Emmanuel Gallucci, and Karen Scrivener. (2008). "Influence of Limestone on the Hydration of Portland Cements." Cement and Concrete Research 38 (6): 848–60. https://doi.org/10.1016/j.cemconres.2008.01.002. DOI: https://doi.org/10.1016/j.cemconres.2008.01.002

Lundgren, Monica. (2004). "Limestone Filler as Addition in Cement Mortars: Influence on the Early-Age Strength Development at Low Temperature." https://www.researchgate.net/publication/228512666.

Ma, Jian, Zhuqing Yu, Chenxin Ni, Hu Shi, and Xiaodong Shen. (2019). "Effects of Limestone Powder on the Hydration and Microstructure Development of Calcium Sulphoaluminate Cement under Long-Term Curing." Construction and Building Materials 199 (February): 688–95. https://doi.org/10.1016/j.conbuildmat.2018.12.054. DOI: https://doi.org/10.1016/j.conbuildmat.2018.12.054

Machner, Alisa, Maciej Zajac, Mohsen ben Haha, Knut O. Kjellsen, Mette R. Geiker, and Klaartje de Weerdt. (2017). "Portland Metakaolin Cement Containing Dolomite or Limestone – Similarities and Differences in Phase Assemblage and Compressive Strength." Construction and Building Materials 157 (December): 214–25. https://doi.org/10.1016/j.conbuildmat.2017.09.056. DOI: https://doi.org/10.1016/j.conbuildmat.2017.09.056

Malhotra, V. M., and G. G. Carette. (1985). "Performance of Concrete Incorporating Limestone Dust as Partial Replacement for Sand."

Marques, Pedro Faustino, Carlos Chastre, and Ângela Nunes. (2013). "Carbonation Service Life Modelling of RC Structures for Concrete with Portland and Blended Cements." Cement and Concrete Composites 37 (1): 171–84. https://doi.org/10.1016/j.cemconcomp.2012.10.007. DOI: https://doi.org/10.1016/j.cemconcomp.2012.10.007

Martin, Lukas H.J., Frank Winnefeld, Christian J. Müller, and Barbara Lothenbach. (2015). "Contribution of Limestone to the Hydration of Calcium Sulfoaluminate Cement." Cement and Concrete Composites 62 (August): 204–11. https://doi.org/10.1016/j.cemconcomp.2015.07.005. DOI: https://doi.org/10.1016/j.cemconcomp.2015.07.005

Marzouki, A., A. Lecomte, A. Beddey, C. Diliberto, and M. ben Ouezdou. (2013). "The Effects of Grinding on the Properties of Portland-Limestone Cement." Construction and Building Materials 48: 1145–55. https://doi.org/10.1016/j.conbuildmat.2013.07.053. DOI: https://doi.org/10.1016/j.conbuildmat.2013.07.053

McNally, Ciaran, and Emma Sheils. (2012). "Probability-Based Assessment of the Durability Characteristics of Concretes Manufactured Using CEM II and GGBS Binders." Construction and Building Materials 30: 22–29. https://doi.org/10.1016/j.conbuildmat.2011.11.029. DOI: https://doi.org/10.1016/j.conbuildmat.2011.11.029

M.D.A. Thomas, K. Cail, B. Blair, A. Delagrave, P. Masson, and K. Kazanis. (2010). "Use of Low-CO₂ Portland Limestone Cement for Pavement Construction in Canada." International Journal of Pavement Research and Technology, September.

Meddah, Mohammed Seddik, Mukesh C. Lmbachiya, and Ravindra K. Dhir. (2014). "Potential Use of Binary and Composite Limestone Cements in Concrete Production." Construction and Building Materials 58 (May): 193–205. https://doi.org/10.1016/j.conbuildmat.2013.12.012. DOI: https://doi.org/10.1016/j.conbuildmat.2013.12.012

Menadi, B., S. Kenai, J. Khatib, and A. Aït-Mokhtar. (2009). "Strength and Durability of Concrete Incorporating Crushed Limestone Sand." Construction and Building Materials 23 (2): 625–33. https://doi.org/10.1016/j.conbuildmat.2008.02.005. DOI: https://doi.org/10.1016/j.conbuildmat.2008.02.005

Méndez-Páramo, R.A. (2024). “Performance of Portland-Limestone Cement Pastes and Mortars with Inert Limestone Filler Additions,” Master in Science in Engineering Thesis, Tecnologico de Monterrey, Santiago de Querétaro, Querétaro, November.

Mikanovic, N., and Carmel J. (2008). "Influence of Superplasticizers on the Rheology and Stability of Limestone and Cement Pastes." Cement and Concrete Research 38 (7): 907–19. https://doi.org/10.1016/j.cemconres.2008.01.015. DOI: https://doi.org/10.1016/j.cemconres.2008.01.015

Mohammadi, Iman, and Warren South. (2015). "Decision-Making on Increasing Limestone Content of General Purpose Cement." Journal of Advanced Concrete Technology 13 (11): 528–37. https://doi.org/10.3151/jact.13.528. DOI: https://doi.org/10.3151/jact.13.528

Mohammadi, James, and Warren South. (2016). "Effect of up to 12% Substitution of Clinker with Limestone on Commercial Grade Concrete Containing Supplementary Cementitious Materials." Construction and Building Materials 115 (July): 555–64. https://doi.org/10.1016/j.conbuildmat.2016.04.071. DOI: https://doi.org/10.1016/j.conbuildmat.2016.04.071

Moir, Graeme K., and Steven Kelham. (1999). "Developments in the Manufacture and Use of Portland Limestone Cement."

Montgomery, D. G., B. K. Van, I. Hinczak, and K. Turner. (1998). "Limestone Modified Cement for High-Performance Concretes."

Moon, Gyu Don, Sungwoo Oh, Sang Hwa Jung, and Young Cheol Choi. (2017). "Effects of the Fineness of Limestone Powder and Cement on the Hydration and Strength Development of PLC Concrete." Construction and Building Materials 135 (March): 129–36. https://doi.org/10.1016/j.conbuildmat.2016.12.189. DOI: https://doi.org/10.1016/j.conbuildmat.2016.12.189

Mostofinejad, Davood, Mahshid Khademolmomenin, and Bahareh Tayebani. (2021). "Evaluating Durability Parameters of Concrete Containing Limestone Powder and Slag under Bacterial Remediation." Journal of Building Engineering 40 (August). https://doi.org/10.1016/j.jobe.2021.102312. DOI: https://doi.org/10.1016/j.jobe.2021.102312

Moukwa, M. (1989). Penetration of chloride ions from sea water into mortars under different exposure conditions." Vol. 19. DOI: https://doi.org/10.1016/0008-8846(89)90102-6

Moukwa, M., and P.C. Aïtcin. (1988). "The effect of drying on cement pastes pore structure as determined by mercury porosimetry." Vol. 18. DOI: https://doi.org/10.1016/0008-8846(88)90098-1

Mounanga, Pierre, Muhammad Irfan Ahmad Khokhar, Rana el Hachem, and Ahmed Loukili. (2011). "Improvement of the Early-Age Reactivity of Fly Ash and Blast Furnace Slag Cementitious Systems Using Limestone Filler." Materials and Structures/Materiaux et Constructions 44 (2): 437–53. https://doi.org/10.1617/s11527-010-9637-1. DOI: https://doi.org/10.1617/s11527-010-9637-1

Müller, Christoph. (2012). "Use of Cement in Concrete According to European Standard EN 206-1." HBRC Journal 8 (1): 1–7. https://doi.org/10.1016/j.hbrcj.2012.08.001. DOI: https://doi.org/10.1016/j.hbrcj.2012.08.001

Muthu, Murugan, Boddapati Ganesh Kumar, V. Govindaraj, and Łukasz Sadowski. (2025). "Performance and Life Cycle of Portland Limestone Cement Mixes Admixed with Gypsum." European Journal of Environmental and Civil Engineering 29 (5): 966–82. https://doi.org/10.1080/19648189.2024.2423239. DOI: https://doi.org/10.1080/19648189.2024.2423239

Mwaiuwinga, Shaaban, Toshiki Ayano, and Kenji Sakata. (1997). " Influence of urea in concrete." Cement and Concrete Research. Vol. 27. DOI: https://doi.org/10.1016/S0008-8846(97)00051-3

Nehdi, Moncef, Sidney Mindess, and Pierre-Claude Altcin. (1996). “Optimization of high strength limestone filler cement mortars.” Cement and Concrete Research, Vol. 26. DOI: https://doi.org/10.1016/0008-8846(96)00071-3

Neto, Claudio S., and Vicente C. Campiteli. (1990). “The Influence of Limestone Additions on the Rheological Properties and Water Retention Value of Portland Cement Slurries.” ASTM. DOI: https://doi.org/10.1520/STP23468S

Neves Junior, Alex, Saulo Rocha Ferreira, Romildo Dias Toledo Filho, Eduardo de Moraes Rego Fairbairn, and Jo Dweck. (2019). “Effect of Early Age Curing Carbonation on the Mechanical Properties and Durability of High Initial Strength Portland Cement and Lime-Pozolan Composites Reinforced with Long Sisal Fibres.” Composites Part B: Engineering, 163 (April): 351–362. https://doi.org/10.1016/j.compositesb.2018.11.006. DOI: https://doi.org/10.1016/j.compositesb.2018.11.006

Neves, R., B. Sena da Fonseca, F. Branco, J. de Brito, A. Castela, and M. F. Montemor. (2015). “Assessing Concrete Carbonation Resistance through Air Permeability Measurements.” Construction and Building Materials, 82 (May): 304–309. https://doi.org/10.1016/j.conbuildmat.2015.02.075. DOI: https://doi.org/10.1016/j.conbuildmat.2015.02.075

Noui, Ammar, and Leila Zeghichi. (2017). “The Effect of Limestone Fineness on Ternary Cement Fresh-State and Early-Age Properties.” Mining Science, 24: 195–208. https://doi.org/10.5277/msc172412.

Péraay, Jean, Sophie Hussonb, and Bernard Guilhot’. (1999). “Influence of Finely Ground Limestone on Cement Hydration.” Cement and Concrete Composites, Vol. 21. DOI: https://doi.org/10.1016/S0958-9465(98)00020-1

Palm, Sebastian, Tilo Proske, Moien Rezvani, Stefan Hainer, Christoph Müller, and Carl Alexander Graubner. (2016). “Cements with a High Limestone Content - Mechanical Properties, Durability and Ecological Characteristics of the Concrete.” Construction and Building Materials, 119 (August): 308–318. https://doi.org/10.1016/j.conbuildmat.2016.05.009. DOI: https://doi.org/10.1016/j.conbuildmat.2016.05.009

Pandey, S. P., and R. L. Sharma. (2000). “The Influence of Mineral Additives on the Strength and Porosity of OPC Mortar.” Cement and Concrete Research, Vol. 30. DOI: https://doi.org/10.1016/S0008-8846(99)00180-5

Panesar, Daman K., and James Francis. (2014). “Influence of Limestone and Slag on the Pore Structure of Cement Paste Based on Mercury Intrusion Porosimetry and Water Vapour Sorption Measurements.” Construction and Building Materials, 52 (February): 52–58. https://doi.org/10.1016/j.conbuildmat.2013.11.022. DOI: https://doi.org/10.1016/j.conbuildmat.2013.11.022

Parrott, L. J. (1996). “Some Effects of Cement and Curing upon Carbonation and Reinforcement Corrosion in Concrete.” Vol. 29. DOI: https://doi.org/10.1007/BF02486162

Pavía, S., and M. Aly. (2019). “Sustainable, Hydraulic-Lime-Limestone Binders for Construction.” Advances in Civil Engineering Materials, 8 (3). https://doi.org/10.1520/ACEM20180124. DOI: https://doi.org/10.1520/ACEM20180124

Pavoine, Alexandre, David Harbec, and Thierry Chaussadent. (2014). “Impact of Alternative Cementitious Material on the Mechanical and Transfer Properties of Concrete.” Materials Journal, 111 (3). https://doi.org/10.14359/51686828ï. DOI: https://doi.org/10.14359/51686828

Pelletier-Chaignat, Laure, Frank Winnefeld, Barbara Lothenbach, and Christian Jörg Müller. (2012). “Beneficial Use of Limestone Filler with Calcium Sulphoaluminate Cement.” Construction and Building Materials, 26 (1): 619–627. https://doi.org/10.1016/j.conbuildmat.2011.06.065. DOI: https://doi.org/10.1016/j.conbuildmat.2011.06.065

Perlot, Céline, Patrick Rougeau, and Sylvain Dehaudt. (2013). “Slurry of Metakaolin Combined with Limestone Addition for Self-Compacted Concrete. Application for Precast Industry.” Cement and Concrete Composites, 44: 50–57. https://doi.org/10.1016/j.cemconcomp.2013.07.003. DOI: https://doi.org/10.1016/j.cemconcomp.2013.07.003

Persson, B. (2004). “Chloride Migration Coefficient of Self-Compacting Concrete.” Vol. 37. DOI: https://doi.org/10.1617/13846

Persson, Bertil. (2001). “Assessment of the chloride migration coefficient, internal frost resistance, salt frost scaling and sulphate resistance of self-compacting concrete - with some interrelated properties.” www.byggnadsmaterial.lth.se.

Petit, Jean Yves, and Eric Wirquin. (2010). “Effect of Limestone Filler Content and Superplasticizer Dosage on Rheological Parameters of Highly Flowable Mortar under Light Pressure Conditions.” Cement and Concrete Research, 40 (2): 235–241. https://doi.org/10.1016/j.cemconres.2009.10.013. DOI: https://doi.org/10.1016/j.cemconres.2009.10.013

Pham, Van Toan, Phalkong Meng, Phuong Trinh Bui, Yuko Ogawa, and Kenji Kawai. (2020). “Effects of Shirasu Natural Pozzolan and Limestone Powder on the Strength and Aggressive Chemical Resistance of Concrete.” Construction and Building Materials, 239 (April). https://doi.org/10.1016/j.conbuildmat.2019.117679. DOI: https://doi.org/10.1016/j.conbuildmat.2019.117679

Phung, Quoc Tri, Norbert Maes, Diederik Jacques, Els Bruneel, Isabel van Driessche, Guang Ye, and Geert de Schutter. (2015). “Effect of Limestone Fillers on Microstructure and Permeability Due to Carbonation of Cement Pastes under Controlled CO₂ Pressure Conditions.” Construction and Building Materials, 82 (May): 376–390. https://doi.org/10.1016/j.conbuildmat.2015.02.093. DOI: https://doi.org/10.1016/j.conbuildmat.2015.02.093

Pipilikaki, P., and M. Beazi-Katsioti. (2009). “The Assessment of Porosity and Pore Size Distribution of Limestone Portland Cement Pastes.” Construction and Building Materials, 23 (5): 1966–1970. https://doi.org/10.1016/j.conbuildmat.2008.08.028. DOI: https://doi.org/10.1016/j.conbuildmat.2008.08.028

Pipilikaki, P., and M. Katsioti. (2009). “Study of the Hydration Process of Quaternary Blended Cements and Durability of the Produced Mortars and Concretes.” Construction and Building Materials, 23 (6): 2246–2250. https://doi.org/10.1016/j.conbuildmat.2008.11.015. DOI: https://doi.org/10.1016/j.conbuildmat.2008.11.015

Pipilikaki, P., M. Katsioti, and J. L. Gallias. (2009). “Performance of Limestone Cement Mortars in a High Sulfates Environment.” Construction and Building Materials, 23 (2): 1042–1049. https://doi.org/10.1016/j.conbuildmat.2008.05.001. DOI: https://doi.org/10.1016/j.conbuildmat.2008.05.001

Poppe, Anne Mieke, and Geert de Schutter. (2005). “Cement Hydration in the Presence of High Filler Contents.” Cement and Concrete Research, 35 (12): 2290–2299. https://doi.org/10.1016/j.cemconres.2005.03.008. DOI: https://doi.org/10.1016/j.cemconres.2005.03.008

Poudyal, Lochana, Kushal Adhikari, and Moon Won. (2021). “Mechanical and Durability Properties of Portland Limestone Cement (PLC) Incorporated with Nano Calcium Carbonate (CaCO₃).” Materials, 14 (4): 1–19. https://doi.org/10.3390/ma14040905. DOI: https://doi.org/10.3390/ma14040905

Pourkhorshidi, Alireza, Masoud Jamshidi, Meisam Najimi, A. Pourkhorshidi, M. Jamshidi, and M. Najimi. (2010). “Effects of w/c Ratio on Portland Limestone Cement Concrete.” https://doi.org/10.1680/coma.2010.163. DOI: https://doi.org/10.1680/coma.2010.163.2.71

Proske, Tilo, Stefan Hainer, Moien Rezvani, and Carl Alexander Graubner. (2013). “Eco-Friendly Concretes with Reduced Water and Cement Contents - Mix Design Principles and Laboratory Tests.” Cement and Concrete Research, 51: 38–46. https://doi.org/10.1016/j.cemconres.2013.04.011. DOI: https://doi.org/10.1016/j.cemconres.2013.04.011

Proske, Tilo, Stefan Hainer, Moien Rezvani, and Carl Alexander Graubner.. (2014). “Eco-Friendly Concretes with Reduced Water and Cement Content - Mix Design Principles and Application in Practice.” Construction and Building Materials 67 (PART C): 413–21. https://doi.org/10.1016/j.conbuildmat.2013.12.066. DOI: https://doi.org/10.1016/j.conbuildmat.2013.12.066

Rabehi, Mohamed, Bouzidi Mezghiche, and Salim Guettala. (2013). “Correlation between Initial Absorption of the Cover Concrete, the Compressive Strength and Carbonation Depth.” Construction and Building Materials 45: 123–29. https://doi.org/10.1016/j.conbuildmat.2013.03.074. DOI: https://doi.org/10.1016/j.conbuildmat.2013.03.074

Rahhal, V. F., E. F. Irassar, M. A. Trezza, and V. L. Bonavetti. (2012). “Calorimetric Characterization of Portland Limestone Cement Produced by Intergrinding.” Journal of Thermal Analysis and Calorimetry 109 (1): 153–61. https://doi.org/10.1007/s10973-011-1575-9. DOI: https://doi.org/10.1007/s10973-011-1575-9

Ramezanianpour, A. M., Kh Esmaeili, S. A. Ghahari, and A. A. Ramezanianpour. (2014). “Influence of Initial Steam Curing and Different Types of Mineral Additives on Mechanical and Durability Properties of Self-Compacting Concrete.” Construction and Building Materials 73 (December): 187–94. https://doi.org/10.1016/j.conbuildmat.2014.09.072. DOI: https://doi.org/10.1016/j.conbuildmat.2014.09.072

Ramezanianpour, Ali A., E. Ghiasvand, I. Nickseresht, M. Mahdikhani, and F. Moodi. (2009). “Influence of Various Amounts of Limestone Powder on Performance of Portland Limestone Cement Concretes.” Cement and Concrete Composites 31 (10): 715–20. https://doi.org/10.1016/j.cemconcomp.2009.08.003. DOI: https://doi.org/10.1016/j.cemconcomp.2009.08.003

Ramezanianpour, Amir Mohammad, and R. Douglas Hooton. (2013). “Sulfate Resistance of Portland-Limestone Cements in Combination with Supplementary Cementitious Materials.” Materials and Structures/Materiaux et Constructions 46 (7): 1061–73. https://doi.org/10.1617/s11527-012-9953-8. DOI: https://doi.org/10.1617/s11527-012-9953-8

Río, Olga, Viet Duc Nguyen, and Khan Nguyen. (2015). “Exploring the Potential of the Functionally Graded SCCC for Developing Sustainable Concrete Solutions.” Journal of Advanced Concrete Technology 13 (3): 193–204. https://doi.org/10.3151/jact.13.193. DOI: https://doi.org/10.3151/jact.13.193

Rizwan, Syed Ali, and Thomas A. Bier. (2012). “Blends of Limestone Powder and Fly-Ash Enhance the Response of Self-Compacting Mortars.” Construction and Building Materials 27 (1): 398–403. https://doi.org/10.1016/j.conbuildmat.2011.07.030. DOI: https://doi.org/10.1016/j.conbuildmat.2011.07.030

Rozière, E., and A. Loukili. (2011). “Performance-Based Assessment of Concrete Resistance to Leaching.” Cement and Concrete Composites 33 (4): 451–56. https://doi.org/10.1016/j.cemconcomp.2011.02.002. DOI: https://doi.org/10.1016/j.cemconcomp.2011.02.002

Ryou, Jaesuk, Seungtae Lee, Daewook Park, Seongsoo Kim, and Hoseop Jung. (2015). “Durability of Cement Mortars Incorporating Limestone Filler Exposed to Sodium Sulfate Solution.” KSCE Journal of Civil Engineering 19 (5): 1347–58. https://doi.org/10.1007/s12205-012-0457-4. DOI: https://doi.org/10.1007/s12205-012-0457-4

Saca, Nastasia, and Maria Georgescu. (2014). “Behavior of Ternary Blended Cements Containing Limestone Filler and Fly Ash in Magnesium Sulfate Solution at Low Temperature.” Construction and Building Materials 71 (November): 246–53. https://doi.org/10.1016/j.conbuildmat.2014.08.037. DOI: https://doi.org/10.1016/j.conbuildmat.2014.08.037

Saetta, A. V., Schrefler, B. A., & Vitaliani, R. V. (1995). Carbonation of concrete and the mechanism of moisture and heat transfer. Cement and Concrete Research, 25(4), 771–782. https://doi.org/10.1016/0008-8846(93)90030-D. DOI: https://doi.org/10.1016/0008-8846(95)00166-2

Sakai, Etsuo, Keisuke Masuda, Yasuo Kakinuma, and Yutaka Aikawa. (2009). “Effects of Shape and Packing Density of Powder Particles on the Fluidity of Cement Pastes with Limestone Powder.” Journal of Advanced Concrete Technology. Vol. 7. DOI: https://doi.org/10.3151/jact.7.347

Sanish, K. B., Narayanan Neithalath, and Manu Santhanam. (2013). “Monitoring the Evolution of Material Structure in Cement Pastes and Concretes Using Electrical Property Measurements.” Construction and Building Materials 49: 288–97. https://doi.org/10.1016/j.conbuildmat.2013.08.038. DOI: https://doi.org/10.1016/j.conbuildmat.2013.08.038

Sato, T., and J. J. Beaudoin. (2011). “Effect of Nano-CaCO3 on Hydration of Cement Containing Supplementary Cementitious Materials.” Advances in Cement Research 23 (1): 33–43. https://doi.org/10.1680/adcr.9.00016. DOI: https://doi.org/10.1680/adcr.9.00016

Schöler, Axel, Barbara Lothenbach, Frank Winnefeld, and Maciej Zajac. (2015). “Hydration of Quaternary Portland Cement Blends Containing Blast-Furnace Slag, Siliceous Fly Ash and Limestone Powder.” Cement and Concrete Composites 55: 374–82. https://doi.org/10.1016/j.cemconcomp.2014.10.001. DOI: https://doi.org/10.1016/j.cemconcomp.2014.10.001

Segura, I., M. Molero, S. Aparicio, J. J. Anaya, and A. Moragues. (2013). “Decalcification of Cement Mortars: Characterisation and Modelling.” Cement and Concrete Composites 35 (1): 136–50. https://doi.org/10.1016/j.cemconcomp.2012.08.015. DOI: https://doi.org/10.1016/j.cemconcomp.2012.08.015

Senhadji, Y., G. Escadeillas, M. Mouli, H. Khelafi, and Benosman. (2014). “Influence of Natural Pozzolan, Silica Fume and Limestone Fine on Strength, Acid Resistance and Microstructure of Mortar.” Powder Technology 254 (March): 314–23. https://doi.org/10.1016/j.powtec.2014.01.046. DOI: https://doi.org/10.1016/j.powtec.2014.01.046

Sezer, G.I. (2012). “Compressive Strength and Sulfate Resistance of Limestone and/or Silica Fume Mortars.” Construction and Building Materials 26 (1): 613–18. https://doi.org/10.1016/j.conbuildmat.2011.06.064. DOI: https://doi.org/10.1016/j.conbuildmat.2011.06.064

Shaikh, Faiz U.A., and Steve W.M. Supit. (2014). “Mechanical and Durability Properties of High Volume Fly Ash (HVFA) Concrete Containing Calcium Carbonate (CaCO3) Nanoparticles.” Construction and Building Materials 70 (November): 309–21. https://doi.org/10.1016/j.conbuildmat.2014.07.099. DOI: https://doi.org/10.1016/j.conbuildmat.2014.07.099

Shaker, Fatma, Ahmed Rashad, and Mohamed Allam. (2018). “Properties of Concrete Incorporating Locally Produced Portland Limestone Cement.” Ain Shams Engineering Journal 9 (4): 2301–9. https://doi.org/10.1016/j.asej.2017.04.005. DOI: https://doi.org/10.1016/j.asej.2017.04.005

Shen, Linghua, Qinghua Li, Wei Ge, and Shilang Xu. (2020). “The Mechanical Property and Frost Resistance of Roller Compacted Concrete by Mixing Silica Fume and Limestone Powder: Experimental Study.” Construction and Building Materials 239 (April). https://doi.org/10.1016/j.conbuildmat.2019.117882. DOI: https://doi.org/10.1016/j.conbuildmat.2019.117882

Siad, H., H. A. Mesbah, M. Mouli, G. Escadeillas, and H. Khelafi. (2014). “Influence of Mineral Admixtures on the Permeation Properties of Self-Compacting Concrete at Different Ages.” Arabian Journal for Science and Engineering 39 (5): 3641–49. https://doi.org/10.1007/s13369-014-1055-1. DOI: https://doi.org/10.1007/s13369-014-1055-1

Siad, Hocine, Ahmed Alyousif, Ozlem Kasap Keskin, Suleyman Bahadir Keskin, Mohamed Lachemi, Mustafa Sahmaran, and Khandaker M. Anwar Hossain. (2015). “Influence of Limestone Powder on Mechanical, Physical and Self-Healing Behavior of Engineered Cementitious Composites.” Construction and Building Materials 99 (November): 1–10. https://doi.org/10.1016/j.conbuildmat.2015.09.007. DOI: https://doi.org/10.1016/j.conbuildmat.2015.09.007

Sideris, Kosmas K., and Nikolaos S. Anagnostopoulos. (2013). “Durability of Normal Strength Self-Compacting Concretes and Their Impact on Service Life of Reinforced Concrete Structures.” Construction and Building Materials 41: 491–97. https://doi.org/10.1016/j.conbuildmat.2012.12.042. DOI: https://doi.org/10.1016/j.conbuildmat.2012.12.042

Silva, P. R. da, and J. de Brito. (2015). “Experimental Study of the Porosity and Microstructure of Self-Compacting Concrete (SCC) with Binary and Ternary Mixes of Fly Ash and Limestone Filler.” Construction and Building Materials 86 (July): 101–12. https://doi.org/10.1016/j.conbuildmat.2015.03.110. DOI: https://doi.org/10.1016/j.conbuildmat.2015.03.110

Silva, Pedro Raposeiro da,and Jorge de Brito. (2016). “Durability Performance of Self-Compacting Concrete (SCC) with Binary and Ternary Mixes of Fly Ash and Limestone Filler.” Materials and Structures/Materiaux et Constructions 49 (7): 2749–66. https://doi.org/10.1617/s11527-015-0683-6. DOI: https://doi.org/10.1617/s11527-015-0683-6

Sina, Alain Tèebwaoga, Jamal Ait Brahim, Bilal ben Ali, Brahim Achiou, Nils Haneklaus, and Redouane Beniazza. (2024). “Securing Gypsum Demand in Cement Industry by Gypsum By-Products: Current Challenges and Prospects.” Materials Today Sustainability. https://doi.org/10.1016/j.mtsust.2024.101034. DOI: https://doi.org/10.1016/j.mtsust.2024.101034

Skaropoulou, A., G. Kakali, and S. Tsivilis. (2012). “Thaumasite Form of Sulfate Attack in Limestone Cement Concrete: The Effect of Cement Composition, Sand Type and Exposure Temperature.” Construction and Building Materials 36 (November): 527–33. https://doi.org/10.1016/j.conbuildmat.2012.06.048. DOI: https://doi.org/10.1016/j.conbuildmat.2012.06.048

Skaropoulou, A., S. Tsivilis, G. Kakali, J. H. Sharp, and R. N. Swamy. (2009). “Thaumasite Form of Sulfate Attack in Limestone Cement Mortars: A Study on Long Term Efficiency of Mineral Admixtures.” Construction and Building Materials 23 (6): 2338–45. https://doi.org/10.1016/j.conbuildmat.2008.11.004. DOI: https://doi.org/10.1016/j.conbuildmat.2008.11.004

Sonebi, M. (2009). “Transport Properties of Self-Consolidating Concrete.” https://www.researchgate.net/publication/258421410.

Soroka, I., and N. Setter. (1977). “The Effect of Fillers on Strength of Cement Mortars.” Cement and Concrete Research. Vol. 7. Pergamon Press, Inc. DOI: https://doi.org/10.1016/0008-8846(77)90073-4

Soroka, I., and N. Stern. (1978). “Calcareous Fillers and the Compressive Strength of Portland Cement.” Vol. 6. Pergamon Press, Inc. DOI: https://doi.org/10.1016/0008-8846(76)90099-5

Steiner, Sarah, Tilo Proske, Frank Winnefeld, and Barbara Lothenbach. (2022). “Effect of Limestone Fillers on CO2 and Water Vapour Diffusion in Carbonated Concrete.” Cement 8 (June): 100027. https://doi.org/10.1016/j.cement.2022.100027. DOI: https://doi.org/10.1016/j.cement.2022.100027

Sua-Iam, Gritsada, and Natt Makul. (2013). “Utilization of Limestone Powder to Improve the Properties of Self-Compacting Concrete Incorporating High Volumes of Untreated Rice Husk Ash as Fine Aggregate.” Construction and Building Materials 38 (January): 455–64. https://doi.org/10.1016/j.conbuildmat.2012.08.016. DOI: https://doi.org/10.1016/j.conbuildmat.2012.08.016

Sua-Iam, Gritsada, and Natt Makul. (2013b). “Use of Increasing Amounts of Bagasse Ash Waste to Produce Self-Compacting Concrete by Adding Limestone Powder Waste.” Journal of Cleaner Production 57 (October): 308–19. https://doi.org/10.1016/j.jclepro.2013.06.009. DOI: https://doi.org/10.1016/j.jclepro.2013.06.009

Suda, Y., Tomiyama, J., Saito, T., and Saeki, T. (2021). Phase assemblage, microstructure and shrinkage of cement paste during carbonation at different relative humidities. Journal of Advanced Concrete Technology, 19, 687-699. https://doi.org/10.3151/jact.19.687. DOI: https://doi.org/10.3151/jact.19.687

Sun, Hongfang, Brian Hohl, Yizheng Cao, Carol Handwerker, Todd S. Rushing, Toney K. Cummins, and Jason Weiss. (2013). “Jet Mill Grinding of Portland Cement, Limestone, and Fly Ash: Impact on Particle Size, Hydration Rate, and Strength.” Cement and Concrete Composites 44: 41–49. https://doi.org/10.1016/j.cemconcomp.2013.03.023. DOI: https://doi.org/10.1016/j.cemconcomp.2013.03.023

T. de Grazia, Mayra, Leandro F. M. Sanchez, Roberto C. O. Romano, and Rafael G. Pileggi. (2019). "Investigation of the Use of Continuous Particle Packing Models (PPMs) on the Fresh and Hardened Properties of Low-Cement Concrete (LCC) Systems." Construction and Building Materials 195 (January): 524–36. https://doi.org/10.1016/j.conbuildmat.2018.11.051. DOI: https://doi.org/10.1016/j.conbuildmat.2018.11.051

Tantawy, M A, M A I Saraya, T el Sokkary, and H El-Didamony. (2010). "Physico-mechanical properties of ultra-fine filled cement pastes part i: limestone."

Thomas Benn, Bernard, Daksh Baweja, Julie E Mills, and B T Benn. (2012). "Increased Limestone Mineral Addition in Cement the Affect on Chloride Ion Ingress of Concrete-A Literature Review." https://www.researchgate.net/publication/344800638.

Thomas, Michael D A, and R Doug Hooton. (2010). "The Durability of Concrete Produced with Portland-Limestone Cement: Canadian Studies."

Thongsanitgarn, Pailyn, Watcharapong Wongkeo, Arnon Chaipanich, and Chi Sun Poon. (2014). "Heat of Hydration of Portland High-Calcium Fly Ash Cement Incorporating Limestone Powder: Effect of Limestone Particle Size." Construction and Building Materials 66 (September): 410–17. https://doi.org/10.1016/j.conbuildmat.2014.05.060. DOI: https://doi.org/10.1016/j.conbuildmat.2014.05.060

Thongsanitgarn, Pailyn, Watcharapong Wongkeo, Sakprayut Sinthupinyo, and Arnon Chaipanich. (2012). "Effect of Limestone Powders on Compressive Strength and Setting Time of Portland-Limestone Cement Pastes." In Advanced Materials Research, 343–344:322–26. https://doi.org/10.4028/www.scientific.net/AMR.343-344.322. DOI: https://doi.org/10.4028/www.scientific.net/AMR.343-344.322

Thiery, M., Villain, G., Dangla, P., and Platret, G. (2007). Investigation of the carbonation front shape on cementitious materials: Effects of the chemical kinetics. Cement and Concrete Research, 37(7), 1047–1058. https://doi.org/10.1016/j.cemconres.2007.04.002. DOI: https://doi.org/10.1016/j.cemconres.2007.04.002

Tobón, Jorge Iván, and Rebeca Gomez. (2008). "Behavior of Portland Cement Blended with Limestones of Different Purity Degrees." https://www.researchgate.net/publication/262464343.

Torres, S. M., C. J. Lynsdale, R. N. Swamy, and J. H. Sharp. (2006). "Microstructure of 5-Year-Old Mortars Containing Limestone Filler Damaged by Thaumasite." Cement and Concrete Research 36 (2): 384–94. https://doi.org/10.1016/j.cemconres.2005.02.007. DOI: https://doi.org/10.1016/j.cemconres.2005.02.007

Torres Acosta, A.A. (2024a). “Evidence of Damage in Newly Inaugurated Concrete Structures: What Decisions Are We Still Making That Prevent Us from Avoiding These Failures? – 1ª Parte,” Vías Terrestres, Número 91, Año 15, septiembre-octubre, Asociación Mexicana de Vías Terrestres A.C., pp. 30-37. ISSN: 2448-5292. (In Spanish)

Torres Acosta, A.A. (2024b). “Evidence of Damage in Newly Inaugurated Concrete Structures: What Decisions Are We Still Making That Prevent Us from Avoiding These Failures? – 2ª Parte,” Vías Terrestres, Número 92, Año 15, noviembre-diciembre, Asociación Mexicana de Vías Terrestres A.C., pp. 17-23. ISSN: 2448-5292. (In Spanish).

Torres-Acosta, Andrés A., Rafael A. Méndez-Páramo, Celene Arista-Perrusquía, Eduardo S. Herrera-Sosa, and Samantha Reyes-Rodríguez. (2025). "Portland Cement Paste Performance When Inert Limestone Filler Is Added as Clinker Replacement." AIMS Materials Science 12 (2): 224–44. https://doi.org/10.3934/matersci.2025012. DOI: https://doi.org/10.3934/matersci.2025012

Torresan, I, R Magarotto, and N Zeminian. (2000). "Interaction Between Superplasticizers and Limestone Blended Cements-Rheological Study."

Truc, O, J P Ollivier, and M Carcassès. (2000). "A New Way for Determining the Chloride Diffusion Coefficient in Concrete from Steady State Migration Test." Cement and Concrete Research. Vol. 30. DOI: https://doi.org/10.1016/S0008-8846(99)00232-X

Tsivilis, S, G Batis, E Chaniotakis, Gr Grigoriadis, and D Theodossis. (2000). "Properties and Behavior of Limestone Cement Concrete and Mortar." DOI: https://doi.org/10.1016/S0008-8846(00)00372-0

Tsivilis, S, E Chaniotakisb, E Badogiannis, G Pahoulasa, and A Ilias. (1999). "A Study on the Parameters Affecting the Properties of Portland Limestone Cements." Cement and Concrete Composites. Vol. 21. DOI: https://doi.org/10.1016/S0958-9465(98)00031-6

Tsivilis, S., G. Kakali, A. Skaropoulou, J. H. Sharp, and R. N. Swamy. (2003). "Use of Mineral Admixtures to Prevent Thaumasite Formation in Limestone Cement Mortar." In Cement and Concrete Composites, 25:969–76. https://doi.org/10.1016/S0958-9465(03)00153-7. DOI: https://doi.org/10.1016/S0958-9465(03)00153-7

Tsivilis, S., J. Tsantilas, G. Kakali, E. Chaniotakis, and A. Sakellariou. (2003). "The Permeability of Portland Limestone Cement Concrete." Cement and Concrete Research 33 (9): 1465–71. https://doi.org/10.1016/S0008-8846(03)00092-9. DOI: https://doi.org/10.1016/S0008-8846(03)00092-9

Uk, Selç, T ¨ Urkel, Yi ˘ Git, and Altuntasçivil Altuntas¸. (2009). "The Effect of Limestone Powder, Fly Ash and Silica Fume on the Properties of Self-Compacting Repair Mortars." S Adhan a. Vol. 34. DOI: https://doi.org/10.1007/s12046-009-0011-3

Uysal, Mucteba. (2012). "Self-Compacting Concrete Incorporating Filler Additives: Performance at High Temperatures." Construction and Building Materials 26 (1): 701–6. https://doi.org/10.1016/j.conbuildmat.2011.06.077. DOI: https://doi.org/10.1016/j.conbuildmat.2011.06.077

Uysal, Mucteba, and Mansur Sumer. (2011). "Performance of Self-Compacting Concrete Containing Different Mineral Admixtures." Construction and Building Materials 25 (11): 4112–20. https://doi.org/10.1016/j.conbuildmat.2011.04.032. DOI: https://doi.org/10.1016/j.conbuildmat.2011.04.032

Uysal, Mucteba, Kemalettin Yilmaz, and Metin Ipek. (2012). "The Effect of Mineral Admixtures on Mechanical Properties, Chloride Ion Permeability and Impermeability of Self-Compacting Concrete." Construction and Building Materials 27 (1): 263–70. https://doi.org/10.1016/j.conbuildmat.2011.07.049. DOI: https://doi.org/10.1016/j.conbuildmat.2011.07.049

Valcuende, M., E. Marco, C. Parra, and P. Serna. (2012). "Influence of Limestone Filler and Viscosity-Modifying Admixture on the Shrinkage of Self-Compacting Concrete." Cement and Concrete Research 42 (4): 583–92. https://doi.org/10.1016/j.cemconres.2012.01.001. DOI: https://doi.org/10.1016/j.cemconres.2012.01.001

Vance, Kirk, Matthew Aguayo, Tandre Oey, Gaurav Sant, and Narayanan Neithalath. (2013). "Hydration and Strength Development in Ternary Portland Cement Blends Containing Limestone and Fly Ash or Metakaolin." Cement and Concrete Composites 39: 93–103. https://doi.org/10.1016/j.cemconcomp.2013.03.028. DOI: https://doi.org/10.1016/j.cemconcomp.2013.03.028

Vikan, Hedda, and Harald Justnes. (2007). "Rheology of Cementitious Paste with Silica Fume or Limestone." Cement and Concrete Research 37 (11): 1512–17. https://doi.org/10.1016/j.cemconres.2007.08.012. DOI: https://doi.org/10.1016/j.cemconres.2007.08.012

Voglis, N., G. Kakali, E. Chaniotakis, and S. Tsivilis. (2005). "Portland-Limestone Cements. Their Properties and Hydration Compared to Those of Other Composite Cements." Cement and Concrete Composites 27 (2): 191–96. https://doi.org/10.1016/j.cemconcomp.2004.02.006. DOI: https://doi.org/10.1016/j.cemconcomp.2004.02.006

Vuk, T, V Tinta, R Gabrovs Ïek, and V Kauc Ïic. (2001). "The Effects of Limestone Addition, Clinker Type and Fineness on Properties of Portland Cement." DOI: https://doi.org/10.1016/S0008-8846(00)00427-0

Weerdt, K. de, M. ben Haha, G. le Saout, K. O. Kjellsen, H. Justnes, and B. Lothenbach. (2012). "The Effect of Temperature on the Hydration of Composite Cements Containing Limestone Powder and Fly Ash." Materials and Structures/Materiaux et Constructions 45 (7): 1101–14. https://doi.org/10.1617/s11527-011-9819-5. DOI: https://doi.org/10.1617/s11527-011-9819-5

Weerdt, K. de, K. O. Kjellsen, E. Sellevold, and H. Justnes. (2011). "Synergy between Fly Ash and Limestone Powder in Ternary Cements." Cement and Concrete Composites 33 (1): 30–38. https://doi.org/10.1016/j.cemconcomp.2010.09.006. DOI: https://doi.org/10.1016/j.cemconcomp.2010.09.006

Weerdt, Klaartje de, Erik Sellevold, Knut O. Kjellsen, and Harald Justnes. (2011). "Fly Ash-Limestone Ternary Cements: Effect of Component Fineness." Advances in Cement Research 23 (4): 203–14. https://doi.org/10.1680/adcr.2011.23.4.203. DOI: https://doi.org/10.1680/adcr.2011.23.4.203

Wu, Kai, Huisheng Shi, Linglin Xu, Guang Ye, and Geert de Schutter. (2016). "Microstructural Characterization of ITZ in Blended Cement Concretes and Its Relation to Transport Properties." Cement and Concrete Research 79 (January): 243–56. https://doi.org/10.1016/j.cemconres.2015.09.018. DOI: https://doi.org/10.1016/j.cemconres.2015.09.018

Wu, Shao Li, Yu Min Liu, Jin Hu, and Hai Chao Mao. (2016). "Effect of Gradation of Mineral Admixtures on Chloride Permeability of Concrete." In Proceedings - 2015 International Conference on Intelligent Transportation, Big Data and Smart City, ICITBS 2015, 362–65. Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/ICITBS.2015.96. DOI: https://doi.org/10.1109/ICITBS.2015.96

Xuan, Mei yu, Sung Chul Bae, Seung Jun Kwon, and Xiao Yong Wang. (2022). "Sustainability Enhancement of Calcined Clay and Limestone Powder Hybrid Ultra-High-Performance Concrete Using Belite-Rich Portland Cement." Construction and Building Materials 351 (October). https://doi.org/10.1016/j.conbuildmat.2022.128932. DOI: https://doi.org/10.1016/j.conbuildmat.2022.128932

Yahia, A., M. Tanimura, and Y. Shimoyama. (2005). "Rheological Properties of Highly Flowable Mortar Containing Limestone Filler-Effect of Powder Content and W/C Ratio." Cement and Concrete Research 35 (3): 532–39. https://doi.org/10.1016/j.cemconres.2004.05.008. DOI: https://doi.org/10.1016/j.cemconres.2004.05.008

Yan, Peiyu, Guidong Mi, and Qiang Wang. (2014). "A Comparison of Early Hydration Properties of Cement-Steel Slag Binder and Cement-Limestone Powder Binder." Journal of Thermal Analysis and Calorimetry 115 (1): 193–200. https://doi.org/10.1007/s10973-013-3360-4. DOI: https://doi.org/10.1007/s10973-013-3360-4

Yaşar, Ergül, Yasin Erdogan, and Alaettin Kiliç. (2004). "Effect of Limestone Aggregate Type and Water-Cement Ratio on Concrete Strength." Materials Letters 58 (5): 772–77. https://doi.org/10.1016/j.matlet.2003.06.004. DOI: https://doi.org/10.1016/j.matlet.2003.06.004

Ye, G., X. Liu, A. M. Poppe, G. de Schutter, and K. van Breugel. (2007). "Numerical Simulation of the Hydration Process and the Development of Microstructure of Self-Compacting Cement Paste Containing Limestone as Filler." Materials and Structures/Materiaux et Constructions 40 (9): 865–75. https://doi.org/10.1617/s11527-006-9189-6. DOI: https://doi.org/10.1617/s11527-006-9189-6

Ye, G., X. Liu, G. de Schutter, A. M. Poppe, and L. Taerwe. (2007). "Influence of Limestone Powder Used as Filler in SCC on Hydration and Microstructure of Cement Pastes." Cement and Concrete Composites 29 (2): 94–102. https://doi.org/10.1016/j.cemconcomp.2006.09.003. DOI: https://doi.org/10.1016/j.cemconcomp.2006.09.003

Yilmaz, Bülent, and Asim Olgun. (2008). "Studies on Cement and Mortar Containing Low-Calcium Fly Ash, Limestone, and Dolomitic Limestone." Cement and Concrete Composites 30 (3): 194–201. https://doi.org/10.1016/j.cemconcomp.2007.07.002. DOI: https://doi.org/10.1016/j.cemconcomp.2007.07.002

Younsi, A., Ph Turcry, A. Aït-Mokhtar, and S. Staquet. (2013). "Accelerated Carbonation of Concrete with High Content of Mineral Additions: Effect of Interactions between Hydration and Drying." Cement and Concrete Research 43 (1): 25–33. https://doi.org/10.1016/j.cemconres.2012.10.008. DOI: https://doi.org/10.1016/j.cemconres.2012.10.008

Yu, R., Spiesz, P., H. J. H. Brouwers. (2015). "Development of an Eco-Friendly Ultra-High Performance Concrete (UHPC) with Efficient Cement and Mineral Admixtures Uses." Cement and Concrete Composites 55: 383–94. https://doi.org/10.1016/j.cemconcomp.2014.09.024. DOI: https://doi.org/10.1016/j.cemconcomp.2014.09.024

Yüksel, Cihat, Ali Mardani-Aghabaglou, Ahsanollah Beglarigale, Halit Yazıcı, Kambiz Ramyar, and Özge Andiç-Çakır. (2016). "Influence of Water/Powder Ratio and Powder Type on Alkali–Silica Reactivity and Transport Properties of Self-Consolidating Concrete." Materials and Structures/Materiaux et Constructions 49 (1–2): 289–99. https://doi.org/10.1617/s11527-014-0497-y. DOI: https://doi.org/10.1617/s11527-014-0497-y

Zajac, MacIej, Anne Rossberg, Gwenn le Saout, and Barbara Lothenbach. (2014). "Influence of Limestone and Anhydrite on the Hydration of Portland Cements." Cement and Concrete Composites 46 (February): 99–108. https://doi.org/10.1016/j.cemconcomp.2013.11.007. DOI: https://doi.org/10.1016/j.cemconcomp.2013.11.007

Zaribaf, Behnaz H., Burak Uzal, and Kimberley Kurtis. (2015). "Compatibility of Superplasticizers with Limestone-Metakaolin Blended Cementitious System." RILEM Bookseries 10: 427–34. https://doi.org/10.1007/978-94-017-9939-3_53. DOI: https://doi.org/10.1007/978-94-017-9939-3_53

Zeli, J, R Krstulovi, E Tkal Ec, and P Krolo. (2000). "The Properties of Portland Cement-Limestone-Silica Fume Mortars." Cement and Concrete Research. Vol. 30. DOI: https://doi.org/10.1016/S0008-8846(99)00214-8

Zhang, Runxiao, Allan N. Scott, and Daman K. Panesar. (2024). "Carbonation and CO2 Reabsorption of Cement-Based Materials: Influence of Limestone Filler and Ground-Granulated Blast-Furnace Slag." Construction and Building Materials 416 (February). https://doi.org/10.1016/j.conbuildmat.2024.135166. DOI: https://doi.org/10.1016/j.conbuildmat.2024.135166

Zhang, Xiong, and Jihong Han. (2000). "The Effect of Ultra-Fine Admixture on the Rheological Property of Cement Paste." DOI: https://doi.org/10.1016/S0008-8846(00)00236-2

Zhang, Yongjuan, and Xiong Zhang. (2008). "Research on Effect of Limestone and Gypsum on C3A, C3S and PC Clinker System." Construction and Building Materials 22 (8): 1634–42. https://doi.org/10.1016/j.conbuildmat.2007.06.013. DOI: https://doi.org/10.1016/j.conbuildmat.2007.06.013

Zhang, Zengqi, Qiang Wang, and Honghui Chen. (2016). "Properties of High-Volume Limestone Powder Concrete under Standard Curing and Steam-Curing Conditions." Powder Technology 301 (November): 16–25. https://doi.org/10.1016/j.powtec.2016.05.054. DOI: https://doi.org/10.1016/j.powtec.2016.05.054

Zhu, Wenzhong, and John C. Gibbs. (2005). "Use of Different Limestone and Chalk Powders in Self-Compacting Concrete." Cement and Concrete Research 35 (8): 1457–62. https://doi.org/10.1016/j.cemconres.2004.07.001. DOI: https://doi.org/10.1016/j.cemconres.2004.07.001

Published

2026-01-01

How to Cite

Solís Cruz, D. M., Torres-Acosta, A. A., & Martín-Pérez, B. (2026). Durability and sustainability performance of Portland limestone cements. Revista ALCONPAT, 16(1), 60–98. https://doi.org/10.21041/ra.v16i1.975

Issue

Section

Review