Review of the evolution of conceptual service life models for reinforced concrete.
DOI:
https://doi.org/10.21041/ra.v16i1.996Keywords:
conceptual model, service life, durability, performance, evolutionAbstract
The objective of this work is to review, according to the available literature, some of the conceptual service life models for reinforced concrete in terms of durability, highlighting their contributions and the aspects in which they evolved with respect to their predecessors. The journey is made chronologically to the present time, beginning with the pioneering work of Tuutti in 1982. The transition from phenomenological to temporal models is addressed, as well as from the prescriptive to the performance point of view, and from the general vision to the specialized vision. One of the main conclusions is that each model must adjust its validity to an age range through which the structure transits, warning about the certainty of the predictions depending on the stage of service life to which it is confined. The review ends with reflections on the present and future use of these conceptual models.
Downloads
References
American Concrete Institute - ACI (2000), ACI 365.1R-00: Service-life prediction, state-of-the-art report, reported by ACI Committee 365.
American Concrete Institute - ACI (2017), ACI 365.1R-17: Report on service life prediction, Farmington Hills, MI.
American Concrete Institute - ACI (2005), LIFE-365, Service life prediction model, computer program for predicting the service life and life-cycle costs of reinforced concrete exposed to chlorides, ACI Committee, vol. 365.
Castro-Borges, P., Briceño-Mena, J. A., Torres Acosta, A. A. (2020), “Recomendaciones generales sobre durabilidad”, Recomendaciones técnicas, Alconpat Internacional, 44pp, https://doi.org/10.21041/AlconpatInternacional/RecTec/2020-01-recomendacionesdedurabilidad DOI: https://doi.org/10.21041/AlconpatInternacional/RecTec/2020-01-recomendacionesdedurabilidad
Alexander, M., Beushausen, H. (2019), Durability, service life prediction, and modelling for reinforced concrete structures – review and critique, Cement and Concrete Research, Volume 122, Pages 17-29, ISSN 0008-8846, https://doi.org/10.1016/j.cemconres.2019.04.018. DOI: https://doi.org/10.1016/j.cemconres.2019.04.018
Alonso, C., Andrade, C. (1993), Lifetime of rebars in carbonated concrete. Proceedings of the 10th European Corrosion Congress, Barcelona, Progress in the understanding and prevention of corrosion, Vol.1, pp. 634–41.
Andrade, C., Tavares F. (2012), ‘LIFEPRED Service life prediction program’, Ingeniería de Seguridad y Durabilidad S.L., Madrid, Spain.
Andrade, C., Alonso, C., Gonzalez, I. A., Rodriguez, J. (1989), Remaining service life of corroding structures. Proceedings of the IABSE Symposium Durability of Structures, Lisbon, pp. 359–64.
Andrade, C., Alonso, M. C., Pettersson, K., Somerville, G., Tuutti, K. (1994), The practical assessment of damage due to corrosion. Proceedings of Int. Conf. Concrete across Borders 1994, Danish Concrete Association, Odense, pp. 337–50.
Andrade, C. (1994), Quantification of durability of reinforcing steel, methods and calculation procedures of concrete technology: new trends, industrial applications, A. Aguado, R. Gettu and S. P. Shah, Editors. RILEM. Published by E&FN Spon, 2-6 Boundary Row, London SE1 8HN, UK ISBN 0 419 20150 5. pp: 158-175.
Andrade C., Izquierdo D. (2020), Propagation period modeling and limit state of degradation, Struct. Concr. 21 (5), 1720–1731. DOI: https://doi.org/10.1002/suco.201900427
Bakker, R. (1994), Model to calculate the rate of carbonation in concrete under different climatic conditions. May. Paper no. 104—CEN TC 104/WGl/TGl/Panel 1. Unpublished.
Bentur, A., Diamond, S. Berke, N. S., (1997), Steel corrosion in concrete: fundamentals and civil engineering practice, E&FN Spon, London, 201 pp. DOI: https://doi.org/10.1201/9781482271898
Castro-Borges, P., Helene P. (2007), “Service life concepts of reinforced concrete structures. New approach”, A. A. Sagüés, H. Castañeda-López, P. Castro-Borges, A. A. Torres-Acosta Editors in Corrosion of Infrastructure, ECS Transactions, Vol 3, Issue 13, ISBN 978-1-56677-540-3, pp. 9-14. DOI: https://doi.org/10.1149/1.2721426
Castro-Borges, P., Helene P. (2018), “A holistic conceptual approach to concrete service life: a split into different time-stages”, Revista ALCONPAT, 8(3), pp. 280-287, http://dx.doi.org/10.21041/ra.v8i3.324 DOI: https://doi.org/10.21041/ra.v8i3.324
CEB Bulletin 148 (1982), Durability of concrete structures – State-of-the-art report, CEB, Lausanne, CH.
CEB Bulletin 152 (1983), Durability of concrete structures – CEB-RILEM International Workshop – Final Report, CEB, Lausanne CH.
CEB Bulletin 182 (1987), Durable concrete structures – CEB Design Guide, Second Edition, CEB, Lausanne, CH
CEB Bulletin 238 (1997), New approach to durability design – An example for carbonation induced corrosion, CEB, Lausanne, CH
CIB-ASTM-ISO-RILEM (1996), Application of the performance concept in building. 3rd International Symposium: (Tel-Aviv, Israel, 12/9/96), pp. 6-73 - 6-82
CIB W80 / RILEM 175 SLM (2004), Service life methodologies. Prediction of service life for building and components, Task Group: performance based methods for service life prediction, state of the art reports, March.
Construction Products Directive (CPD) (1998), European Community Council 89/106/EWG updated 93/68/EWG.
Dudi, L., Krishnan, S., Bishnoi, S. (2023), Numerical modeling for predicting service life of reinforced concrete structures exposed to chloride, Journal of Building Engineering, Volume 79, 107867, ISSN 2352-7102, https://doi.org/10.1016/j.jobe.2023.107867. DOI: https://doi.org/10.1016/j.jobe.2023.107867
RILEM Report (1996), Durability design of concrete structures. Report of RILEM Technical Committee 130-CSL. Ed. by A. Sarja and E. Vesikari. London, RILEM Report 14, E & FN Spon, Chapman & Hall.
Duracrete (1999), Brite/EuRAm report project BE95-1347, DuraCrete: Probabilistic and performace based design
DuraCreteR17 (2000), Final technical report, DuraCrete – probabilistic performance-based durability design of concrete structures, The European Union–Brite EuRam III, (Document BE95-1347/R17).
DURAR Network (1997), “Inspection, evaluation and diagnostic manual of corrosion in reinforced concrete structures”, CYTED, Iberoamerican Program of Science and Tecnology for Development, Subprogram XV Environmental Corrosion/Impact about Materials, Maracaibo, Venezuela, CYTED (1997).
Fagerlund, G., Somerville, G., Tuutti, K. (1994) The residual service life of concrete exposed to the combined effect of frost attack and reinforcement corrosion. Proceedings of Int. Conf. Concrete across Borders 1994, Danish Concrete Association, pp. 351–64.
fib (2006), Model code for service life design, Switzerland, fib bulletin 34.
fib (2013), Model code for concrete structures 2010, Wilhelm Ernst & Sohn, Berlin, DOI: https://doi.org/10.1002/9783433604090
Germany.
Francois, R., Arliguie, G. (1999), “Effect of microcracking and cracking on the development of corrosion in reinforced concrete members,” Magazine of Concrete Research, V. 51, No. 2, pp. 143-150. DOI: https://doi.org/10.1680/macr.1999.51.2.143
Helene, P. (1993), “Contribución al estudio de corrosión en armaduras de concreto armado” en Portugués, tesis de Profesor de docencia libre del departamento de Ingeniería de Construcción Civil de la Universidad de Sao Paulo, Brasil
Helene, P. (1997), “Vida útil de las estructuras de concreto”, en IV Congreso Iberoamericano de las Construcciones y VI Congreso de Control de Calidad CONPAT 1997, 21-24 de octubre de 1997, Porto Alegre, Brasil, 30 pp.
Helene, P. (2003), The new Brazilian standard NB 1/2003 (NBR 6118) and the Service life of concrete structures (in Portuguesse), University of Sao Paulo PCC USP, (2003).
ISO, International Organization for Standardization (2000), ISO 15686-1: Buildings and constructed assets - Service life planning - Part 1: General principles and framework. International Organization for Standardization, Geneva, Switzerland.
ISO, International Organization for Standardization (2001) ISO 15686-2: Buildings and constructed Assets – service life planning – Part 2: Service life prediction procedures.
ISO, International Organization for Standardization (2008), ISO 13823:2008, General principles on the design of structures for durability, International Organization for Standardization.
ISO, International Organization for Standardization (2012), ISO 16204:2012, Durability - service life design of concrete structures, International Organization for Standardization.
Kasami, H., Izumi, I., Tomosawa, F., Fukushi, I. (1986) Carbonation of concrete and corrosion of reinforcement in reinforced concrete. First Joint Workshop on Durability of Reinforced Concrete, Australia-Japan Science and Technology Agreement, Tsukuba, Japan, 30 September– 2 October, 12 pp.
Lai, N., Li, L., Yang, C., Li, J. (2023), Service life of RC seawall under chloride invasion: A theoretical model incorporating convection-diffusion effect, Ocean Engineering, Volume 279, 114590, ISSN 0029-8018, https://doi.org/10.1016/j.oceaneng.2023.114590. DOI: https://doi.org/10.1016/j.oceaneng.2023.114590
Lifecon Deliverable (2003), “D3.2: Service life models, Instructions on methodology and application of models for the prediction of the residual service life for classified environmental loads and types of structures in Europe”, Life cycle management of concrete infrastructures for improved sustainability, Lay, Sascha and Schießl, Peter, authors.
Melchers, R. E. (2003a), “Modeling of marine immersion corrosion for mild and low alloy steels—Part 1: Phenomenological model”, Corrosion, NACE, V. 59, No. 4, pp. 319-334. DOI: https://doi.org/10.5006/1.3277564
Melchers, R. E. (2003b), “Mathematical modelling of the diffusion controlled phase in marine immersion corrosion of mild steel”, Corrosion Science, V. 45, No. 5, pp. 923-940. DOI: https://doi.org/10.1016/S0010-938X(02)00208-1
Melchers, R. E. (2004), “Pitting corrosion of mild steel in marine immersion environment—1: maximum pit depth”, Corrosion, NACE, V. 60, No. 1, pp. 28-39. DOI: https://doi.org/10.5006/1.3287863
Melchers, R., E., Li, C. Q. (2006), Phenomenological modeling of reinforcement corrosion in marine environments. ACI Materials Journal, Technical Paper. Title no. 103-M04(1). https://doi.org/10.14359/15124 . DOI: https://doi.org/10.14359/15124
Mendoza-Rangel, J. M., Castro-Borges, P. (2007), “Critical review of service life concepts of reinforced concrete structures”, A. A. Sagüés, H. Castañeda-López, P. Castro-Borges, A. A. Torres-Acosta Editors in Corrosion of Infrastructure, ECS Transactions, Vol 3, Issue 13, ISBN 978-1-56677-540-3, pp. 3-8, 2007. DOI: https://doi.org/10.1149/1.2721425
Mendoza-Rangel, J. M., Castro-Borges, P. (2009), Credibility of concepts and models about service life of concrete structures in the face of the effects of the global climatic change. A critical review. Materiales de Construcción, 59 (296), 117–124. https://doi.org/10.3989/mc.2009.46608 DOI: https://doi.org/10.3989/mc.2009.46608
Organismo Nacional de Normalización y Certificación de la Construcción y Edificación, S.C. (1999), NMX-C-403-ONNCCE: “Construction Industry – Hydraulic Concrete for Structural Use”. (in Spanish), México (1999).
Organismo Nacional de Normalización y Certificación de la Construcción y Edificación, S.C. (2018), NMX-C-530-ONNCCE: “Industria de la construcción – Durabilidad – Norma general de durabilidad de estructuras de concreto reforzado – Criterios y especificaciones”.
Organismo Nacional de Normalización y Certificación de la Construcción y Edificación, S.C. (2020), NMX-C-569-ONNCCE: “Industria de la Construcción – Durabilidad del Concreto – Diseño con criterios de durabilidad del concreto utilizado en estructuras de concreto con acero de refuerzo – especificaciones”.
Parrot, L. (1992), Design for avoiding damage due to carbonation induced corrosion. April. Paper no. 62—CEN TC 104/WGl/TGl/ Panel 1. Unpublished.
Pihlajavaara, S. E. (1984), The prediction of service life with the aid of multiple testing, reference materials, experience data, and value analysis. VTT Symposium 48, Espoo, Vol. 1, pp. 37–64.
Pihlajavaara, S. E. (1994), Contributions for the development of the estimation of long-term performance and service life of concrete. Helsinki University of Technology, Faculty of Civil Engineering and Surveying, Espoo, Report 3, 26 pp.+articles 49 pp.
REHABILITAR (2003), Manual of concrete structures rehabilitation: “repair, reinforcement and protection”, Helene, P. And Pereira F., Editors, ISBN 85- 903707-1-2 (2003).
Sarja A., Vesikaeri E. (1996), “Durability design of concrete structures” (Editors). Manuscript of RILEM Report of TC 130-CSL, RILEM Report Series 14, Chapter 7 Durability models. pp: 97-111, E & FN Spon, Chapman and Hall, 165 p.
Siemes, A., Vrouwenvelder, A., Beukel, A. van Den (1985). Durability of buildings: a reliability analysis. Heron, 30(3), 3–48.
Siemes, T., Vries, H. (2002), overview of the development of service life design for concrete structures. 9th International Conference on Durability of Materials and Components (9DBMC-2002), Paper 261. https://www.irbnet.de .
Siemes T., Visser J. (2000), Low tensile strength in older concrete structures with alkali silica reaction, Proceedings of the 11th International Conference on Alkali-Aggregate Reaction in Concrete, Quebec City, Canada, June 2000, pp. 1029–1038
Sjöström, C., Brandt E. (1991), Collection of In-service Performance data: State-of-the-art approach by CIB W80 / RILEM 100-TSL, Materials and Structures, Vol. 24, No. 139. DOI: https://doi.org/10.1007/BF02472685
Somerville, G. (1986a), The design life of concrete structures (discussion). The structural engineer, 64A (9), 233-41.
Somerville, G. (1986b), The design life of concrete structures. The structural engineer, 64A, 60-71.
Somerville, G. (1992), The Design life of structures. Proceedings of the 1990 Henderson Colloquium, organized by the International Association for Bridges and Structural Engineering, July 16-18, 1990, University of Cambridge, Blackie, London.
Sommerville G. (1997), Prediction of concrete durability. In J. Glanville and A. M. Neville, Editors, Proceedings of the STATS 21st anniversary conference, pp. 58-76, E & FN Spon, UK.
Tuutti, K. (1982), Corrosion of steel in concrete. Swedish Cement and Concrete Research Institute, 468 p.
Vesikari, E. (1981), Corrosion of reinforcing steels at cracks in concrete. Technical Research Centre of Finland, Espoo. Research Reports 11/1981, 39 pp.+app. 4 pp.
Vesikari, E. (1988), Service life of concrete structures with regard to corrosion of reinforcement. Technical Research Centre of Finland, Espoo. Research Reports 553, 53 pp.
Weyers, R. E., Fitch, M. G., Larsen, E. P., Al-Qadi, I. L., Chamberlin, W. P., Hoffman, P. C. (1994), “Concrete bridge protection and rehabilitation: chemical and physical techniques”. SHRP-S-668, Strategic Highway Research Program, National Research Council, Washington, D.C., 36 pp.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 Castro-Borges, P.

This work is licensed under a Creative Commons Attribution 4.0 International License.
_______________________________
License in effect from September 2020
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.













.png)













